Symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
occurs not only in
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, but also in other branches of mathematics. Symmetry is a type of
invariance: the property that a mathematical object remains unchanged under a set of
operations or
transformations.
Given a structured object ''X'' of any sort, a
symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
is a
mapping of the object onto itself which preserves the structure. This can occur in many ways; for example, if ''X'' is a set with no additional structure, a symmetry is a
bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
map from the set to itself, giving rise to
permutation group
In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to ...
s. If the object ''X'' is a set of points in the plane with its
metric
Metric or metrical may refer to:
Measuring
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
...
structure or any other
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
, a symmetry is a
bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
of the set to itself which preserves the distance between each pair of points (i.e., an
isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
).
In general, every kind of structure in mathematics will have its own kind of symmetry, many of which are listed in the given points mentioned above.
Symmetry in geometry
The types of symmetry considered in basic geometry include
reflectional symmetry,
rotational symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape (geometry), shape has when it looks the same after some rotation (mathematics), rotation by a partial turn (angle), turn. An object's degree of rotational s ...
,
translational symmetry
In physics and mathematics, continuous translational symmetry is the invariance of a system of equations under any translation (without rotation). Discrete translational symmetry is invariant under discrete translation.
Analogously, an operato ...
and
glide reflection symmetry, which are described more fully in the main article
Symmetry (geometry)
In geometry, an object has symmetry if there is an Operation (mathematics), operation or Transformation (function), transformation (such as Translation (geometry), translation, Scaling (geometry), scaling, Rotation (mathematics), rotation or Refl ...
.
Symmetry in calculus
Even and odd functions
Even functions
Let ''f''(''x'') be a
real-valued function of a real variable, then ''f'' is even if the following equation holds for all ''x'' and ''-x'' in the domain of ''f'':
:
Geometrically speaking, the graph face of an even function is
symmetric
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
with respect to the ''y''-axis, meaning that its
graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discret ...
remains unchanged after
reflection about the ''y''-axis. Examples of even functions include , ''x''
2, ''x''
4,
cos(''x''), and
cosh(''x'').
Odd functions
Again, let ''f'' be a
real-valued function of a real variable, then ''f'' is odd if the following equation holds for all ''x'' and ''-x'' in the domain of ''f'':
:
That is,
:
Geometrically, the graph of an odd function has rotational symmetry with respect to the
origin, meaning that its
graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discret ...
remains unchanged after
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
of 180
degrees about the origin. Examples of odd functions are ''x'', ''x''
3,
sin
In religious context, sin is a transgression against divine law or a law of the deities. Each culture has its own interpretation of what it means to commit a sin. While sins are generally considered actions, any thought, word, or act considered ...
(''x''),
sinh(''x''), and
erf(''x'').
Integrating
The
integral
In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
of an odd function from −''A'' to +''A'' is zero, provided that ''A'' is finite and that the function is integrable (e.g., has no vertical asymptotes between −''A'' and ''A'').
The integral of an even function from −''A'' to +''A'' is twice the integral from 0 to +''A'', provided that ''A'' is finite and the function is integrable (e.g., has no vertical asymptotes between −''A'' and ''A'').
This also holds true when ''A'' is infinite, but only if the integral converges.
Series
* The
Maclaurin series
Maclaurin or MacLaurin is a surname. Notable people with the surname include:
* Colin Maclaurin (1698–1746), Scottish mathematician
* Normand MacLaurin (1835–1914), Australian politician and university administrator
* Henry Normand MacLaurin ...
of an even function includes only even powers.
* The Maclaurin series of an odd function includes only odd powers.
* The
Fourier series
A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
of a
periodic even function includes only
cosine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
terms.
* The Fourier series of a periodic odd function includes only
sine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite th ...
terms.
Symmetry in linear algebra
Symmetry in matrices
In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, a symmetric matrix is a
square matrix
In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Squ ...
that is equal to its
transpose
In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal;
that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
(i.e., it is invariant under matrix transposition). Formally, matrix ''A'' is symmetric if
:
By the definition of matrix equality, which requires that the entries in all corresponding positions be equal, equal matrices must have the same dimensions (as matrices of different sizes or shapes cannot be equal). Consequently, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with respect to the
main diagonal
In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a_ where i = j. All off-diagonal elements are zero in a diagonal matrix ...
. So if the entries are written as ''A'' = (''a''
''ij''), then ''a''
''ij'' = a
''ji'', for all indices ''i'' and ''j''.
For example, the following 3×3 matrix is symmetric:
:
Every square
diagonal matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagon ...
is symmetric, since all off-diagonal entries are zero. Similarly, each diagonal element of a
skew-symmetric matrix
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition
In terms of the entries of the matrix, if a ...
must be zero, since each is its own negative.
In linear algebra, a
real symmetric matrix represents a
self-adjoint operator
In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
over a
real inner product space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
. The corresponding object for a
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
inner product space is a
Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
with complex-valued entries, which is equal to its
conjugate transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate ...
. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refers to one which has real-valued entries. Symmetric matrices appear naturally in a variety of applications, and typical numerical linear algebra software makes special accommodations for them.
Symmetry in abstract algebra
Symmetric groups
The symmetric group ''S''
''n'' (on a
finite set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,
is a finite set with five elements. Th ...
of ''n'' symbols) is the
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
whose elements are all the
permutations
In mathematics, a permutation of a Set (mathematics), set can mean one of two different things:
* an arrangement of its members in a sequence or linear order, or
* the act or process of changing the linear order of an ordered set.
An example ...
of the ''n'' symbols, and whose
group operation
In mathematics, a group is a set with an operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is associative, it has an identity element, and ev ...
is the
composition
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
* Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
of such permutations, which are treated as
bijective functions from the set of symbols to itself.
[Jacobson (2009), p. 31.] Since there are ''n''! (''n''
factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times ...
) possible permutations of a set of ''n'' symbols, it follows that the
order
Order, ORDER or Orders may refer to:
* A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica
* Categorization, the process in which ideas and objects are recognized, differentiated, and understood
...
(i.e., the number of elements) of the symmetric group ''S''
''n'' is ''n''!.
Symmetric polynomials
A symmetric polynomial is a
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
''P''(''X''
1, ''X''
2, ..., ''X''
''n'') in ''n'' variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, ''P'' is a ''symmetric polynomial'' if for any
permutation
In mathematics, a permutation of a set can mean one of two different things:
* an arrangement of its members in a sequence or linear order, or
* the act or process of changing the linear order of an ordered set.
An example of the first mean ...
σ of the subscripts 1, 2, ..., ''n'', one has ''P''(''X''
σ(1), ''X''
σ(2), ..., ''X''
σ(''n'')) = ''P''(''X''
1, ''X''
2, ..., ''X''
''n'').
Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view, the
elementary symmetric polynomial
In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary sy ...
s are the most fundamental symmetric polynomials. A
theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
states that any symmetric polynomial can be expressed in terms of elementary symmetric polynomials, which implies that every ''symmetric''
polynomial expression
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (mathematics), ring formed from the set (mathematics), set of polynomials in one or more indeterminate (variable), indeterminates (traditionally ...
in the roots of a
monic polynomial
In algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. That is to say, a monic polynomial is one ...
can alternatively be given as a polynomial expression in the coefficients of the polynomial.
Examples
In two variables ''X''
1 and ''X''
2, one has symmetric polynomials such as:
*
*
and in three variables ''X''
1, ''X''
2 and ''X''
3, one has as a symmetric polynomial:
*
Symmetric tensors
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a symmetric tensor is
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
that is invariant under a
permutation
In mathematics, a permutation of a set can mean one of two different things:
* an arrangement of its members in a sequence or linear order, or
* the act or process of changing the linear order of an ordered set.
An example of the first mean ...
of its vector arguments:
:
for every permutation σ of the symbols .
Alternatively, an ''r''
th order symmetric tensor represented in coordinates as a quantity with ''r'' indices satisfies
:
The space of symmetric tensors of rank ''r'' on a finite-dimensional
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
is
naturally isomorphic
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
to the dual of the space of
homogeneous polynomial
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables ...
s of degree ''r'' on ''V''. Over
fields
Fields may refer to:
Music
*Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song by ...
of
characteristic zero, the
graded vector space
In mathematics, a graded vector space is a vector space that has the extra structure of a ''grading'' or ''gradation'', which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers.
For ...
of all symmetric tensors can be naturally identified with the
symmetric algebra
In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universal ...
on ''V''. A related concept is that of the
antisymmetric tensor In mathematics and theoretical physics, a tensor is antisymmetric or alternating on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. section §7. The index subset must generally ...
or
alternating form
In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
. Symmetric tensors occur widely in
engineering
Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
,
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
.
Galois theory
Given a polynomial, it may be that some of the roots are connected by various
algebraic equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers.
For example, x^5-3x+1=0 is an algebraic equati ...
s. For example, it may be that for two of the roots, say ''A'' and ''B'', that . The central idea of Galois theory is to consider those
permutation
In mathematics, a permutation of a set can mean one of two different things:
* an arrangement of its members in a sequence or linear order, or
* the act or process of changing the linear order of an ordered set.
An example of the first mean ...
s (or rearrangements) of the roots having the property that ''any'' algebraic equation satisfied by the roots is ''still satisfied'' after the roots have been permuted. An important proviso is that we restrict ourselves to algebraic equations whose coefficients are
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s. Thus, Galois theory studies the symmetries inherent in algebraic equations.
Automorphisms of algebraic objects
In
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, an automorphism is an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
from a
mathematical object
A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
to itself. It is, in some sense, a
symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
of the object, and a way of
mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
, called the automorphism group. It is, loosely speaking, the
symmetry group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of the object.
Examples
* In
set theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, an arbitrary
permutation
In mathematics, a permutation of a set can mean one of two different things:
* an arrangement of its members in a sequence or linear order, or
* the act or process of changing the linear order of an ordered set.
An example of the first mean ...
of the elements of a set ''X'' is an automorphism. The automorphism group of ''X'' is also called the
symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
on ''X''.
* In
elementary arithmetic
Elementary arithmetic is a branch of mathematics involving addition, subtraction, multiplication, and Division (mathematics), division. Due to its low level of abstraction, broad range of application, and position as the foundation of all mathema ...
, the set of
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, Z, considered as a group under addition, has a unique nontrivial automorphism: negation. Considered as a
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
, however, it has only the trivial automorphism. Generally speaking, negation is an automorphism of any
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
, but not of a ring or field.
* A group automorphism is a
group isomorphism
In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the ...
from a group to itself. Informally, it is a permutation of the group elements such that the structure remains unchanged. For every group ''G'' there is a natural group homomorphism ''G'' → Aut(''G'') whose
image
An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
is the group Inn(''G'') of
inner automorphism
In abstract algebra, an inner automorphism is an automorphism of a group, ring, or algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within thos ...
s and whose
kernel is the
center of ''G''. Thus, if ''G'' has
trivial center it can be embedded into its own automorphism group.
[
]
* In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, an endomorphism of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'' is a
linear operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
''V'' → ''V''. An automorphism is an invertible linear operator on ''V''. When the vector space is finite-dimensional, the automorphism group of ''V'' is the same as the
general linear group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
, GL(''V'').
* A field automorphism is a
bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
ring homomorphism
In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
from a
field to itself. In the cases of the
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s (Q) and the
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s (R) there are no nontrivial field automorphisms. Some subfields of R have nontrivial field automorphisms, which however do not extend to all of R (because they cannot preserve the property of a number having a square root in R). In the case of the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s, C, there is a unique nontrivial automorphism that sends R into R:
complex conjugation
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
, but there are infinitely (
uncountably
In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger tha ...
) many "wild" automorphisms (assuming the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
). Field automorphisms are important to the theory of
field extension
In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
s, in particular
Galois extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ...
s. In the case of a Galois extension ''L''/''K'' the
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
of all automorphisms of ''L'' fixing ''K'' pointwise is called the
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
of the extension.
Symmetry in representation theory
Symmetry in quantum mechanics: bosons and fermions
In quantum mechanics, bosons have representatives that are symmetric under permutation operators, and fermions have antisymmetric representatives.
This implies the Pauli exclusion principle for fermions. In fact, the Pauli exclusion principle with a single-valued many-particle wavefunction is equivalent to requiring the wavefunction to be antisymmetric. An antisymmetric two-particle state is represented as a
sum of states in which one particle is in state
and the other in state
:
:
and antisymmetry under exchange means that . This implies that , which is Pauli exclusion. It is true in any basis, since unitary changes of basis keep antisymmetric matrices antisymmetric, although strictly speaking, the quantity is not a matrix but an antisymmetric rank-two
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
.
Conversely, if the diagonal quantities are zero ''in every basis'', then the wavefunction component:
:
is necessarily antisymmetric. To prove it, consider the matrix element:
:
This is zero, because the two particles have zero probability to both be in the superposition state
. But this is equal to
:
The first and last terms on the right hand side are diagonal elements and are zero, and the whole sum is equal to zero. So the wavefunction matrix elements obey:
:
.
or
:
Symmetry in set theory
Symmetric relation
We call a relation symmetric if every time the relation stands from A to B, it stands too from B to A.
Note that symmetry is not the exact opposite of
antisymmetry
In linguistics, antisymmetry, is a theory of syntax described in Richard S. Kayne's 1994 book ''The Antisymmetry of Syntax''. Building upon X-bar theory, it proposes a universal, fundamental word order for phrases (Branching (linguistics), branchin ...
.
Symmetry in metric spaces
Isometries of a space
An isometry is a
distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
-preserving map between
metric spaces
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are a general setting for ...
. Given a metric space, or a set and scheme for assigning distances between elements of the set, an isometry is a transformation which maps elements to another metric space such that the distance between the elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional space, two geometric figures are
congruent
Congruence may refer to:
Mathematics
* Congruence (geometry), being the same size and shape
* Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure
* In modu ...
if they are related by an isometry: related by either a
rigid motion, or a
composition
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
* Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
of a rigid motion and a
reflection. Up to a relation by a rigid motion, they are equal if related by a
direct isometry.
Isometries have been used to unify the working definition of symmetry in geometry and for functions, probability distributions, matrices, strings, graphs, etc.
Symmetries of differential equations
A symmetry of a
differential equation is a transformation that leaves the differential equation invariant. Knowledge of such symmetries may help solve the differential equation.
A
Line symmetry of a
system of differential equations
In mathematics, a system of differential equations is a finite set of differential equations. Such a system can be either linear or non-linear. Also, such a system can be either a system of ordinary differential equations or a system of partial di ...
is a continuous symmetry of the system of differential equations. Knowledge of a Line symmetry can be used to simplify an ordinary differential equation through
reduction of order
Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y_1(x) is known and a second linearly independent solution y_2(x) is ...
.
[
]
For
ordinary differential equations
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives ...
, knowledge of an appropriate set of Lie symmetries allows one to explicitly calculate a set of first integrals, yielding a complete solution without integration.
Symmetries may be found by solving a related set of ordinary differential equations.
Solving these equations is often much simpler than solving the original differential equations.
Symmetry in probability
In the case of a finite number of possible outcomes, symmetry with respect to permutations (relabelings) implies a
discrete uniform distribution
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number ''n'' of outcome values are equally likely to be observed. Thus every one of the ''n'' out ...
.
In the case of a real interval of possible outcomes, symmetry with respect to interchanging sub-intervals of equal length corresponds to a
continuous uniform distribution
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that li ...
.
In other cases, such as "taking a random integer" or "taking a random real number", there are no probability distributions at all symmetric with respect to relabellings or to exchange of equally long subintervals. Other reasonable symmetries do not single out one particular distribution, or in other words, there is not a unique probability distribution providing maximum symmetry.
There is one type of
isometry in one dimension that may leave the probability distribution unchanged, that is reflection in a point, for example zero.
A possible symmetry for randomness with positive outcomes is that the former applies for the logarithm, i.e., the outcome and its reciprocal have the same distribution. However this symmetry does not single out any particular distribution uniquely.
For a "random point" in a plane or in space, one can choose an origin, and consider a probability distribution with circular or spherical symmetry, respectively.
See also
*
Use of symmetry in integration
*
Invariance (mathematics)
References
Bibliography
*
* (Concise introduction for lay reader)
*
{{DEFAULTSORT:Symmetry In Mathematics
Symmetry