Straight-line Segment
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a line segment is a part of a
straight line In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimens ...
that is bounded by two distinct endpoints (its
extreme point In mathematics, an extreme point of a convex set S in a Real number, real or Complex number, complex vector space is a point in S that does not lie in any open line segment joining two points of S. The extreme points of a line segment are calle ...
s), and contains every point on the line that is between its endpoints. It is a special case of an '' arc'', with zero
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
. The
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
of a line segment is given by the
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is o ...
between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a line segment is often denoted using an
overline An overline, overscore, or overbar, is a typographical feature of a horizontal and vertical, horizontal line drawn immediately above the text. In old mathematical notation, an overline was called a ''vinculum (symbol), vinculum'', a notation fo ...
( vinculum) above the symbols for the two endpoints, such as in . Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a
polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
or
polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
, the line segment is either an
edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
(of that polygon or polyhedron) if they are adjacent vertices, or a
diagonal In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek � ...
. When the end points both lie on a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
(such as a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
), a line segment is called a chord (of that curve).


In real or complex vector spaces

If is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over or and is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of , then is a line segment if can be parameterized as :L = \ for some vectors \mathbf, \mathbf \in V where is nonzero. The endpoints of are then the vectors and . Sometimes, one needs to distinguish between "open" and "closed" line segments. In this case, one would define a closed line segment as above, and an open line segment as a subset that can be parametrized as : L = \ for some vectors \mathbf, \mathbf \in V. Equivalently, a line segment is the
convex hull In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, ...
of two points. Thus, the line segment can be expressed as a
convex combination In convex geometry and Vector space, vector algebra, a convex combination is a linear combination of point (geometry), points (which can be vector (geometric), vectors, scalar (mathematics), scalars, or more generally points in an affine sp ...
of the segment's two end points. In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, one might define point to be between two other points and , if the distance added to the distance is equal to the distance . Thus in the line segment with endpoints A=(a_x,a_y) and C=(c_x,c_y) is the following collection of points: :\Biggl\ .


Properties

*A line segment is a connected,
non-empty In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whil ...
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
. *If is a
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
, then a closed line segment is a
closed set In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its lim ...
in . However, an open line segment is an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
in
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
is one-dimensional. *More generally than above, the concept of a line segment can be defined in an
ordered geometry Ordered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affi ...
. *A pair of line segments can be any one of the following: intersecting, parallel, skew, or none of these. The last possibility is a way that line segments differ from lines: if two nonparallel lines are in the same Euclidean plane then they must cross each other, but that need not be true of segments.


In proofs

In an axiomatic treatment of geometry, the notion of betweenness is either assumed to satisfy a certain number of axioms, or defined in terms of an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
of a line (used as a coordinate system). Segments play an important role in other theories. For example, in a ''
convex set In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is n ...
'', the segment that joins any two points of the set is contained in the set. This is important because it transforms some of the analysis of convex sets, to the analysis of a line segment. The '' segment addition postulate'' can be used to add congruent segment or segments with equal lengths, and consequently substitute other segments into another statement to make segments congruent.


As a degenerate ellipse

A line segment can be viewed as a degenerate case of an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
, in which the semiminor axis goes to zero, the
foci Focus (: foci or focuses) may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in East Australia Film * ''Focus'' (2001 film), a 2001 film based on the Arthur Miller novel * ''Focus'' (2015 film), a 201 ...
go to the endpoints, and the eccentricity goes to one. A standard definition of an ellipse is the set of points for which the sum of a point's distances to two foci is a constant; if this constant equals the distance between the foci, the line segment is the result. A complete orbit of this ellipse traverses the line segment twice. As a degenerate orbit, this is a radial elliptic trajectory.


In other geometric shapes

In addition to appearing as the edges and
diagonal In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek � ...
s of
polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
s and
polyhedra In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
, line segments also appear in numerous other locations relative to other
geometric shape A shape is a graphical representation of an object's form or its external boundary, outline, or external surface. It is distinct from other object properties, such as color, texture, or material type. In geometry, ''shape'' excludes informat ...
s.


Triangles

Some very frequently considered segments in a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
to include the three
altitudes Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometry, geographical s ...
(each
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
ly connecting a side or its extension to the opposite vertex), the three
median The median of a set of numbers is the value separating the higher half from the lower half of a Sample (statistics), data sample, a statistical population, population, or a probability distribution. For a data set, it may be thought of as the “ ...
s (each connecting a side's
midpoint In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment. Formula The midpoint of a segment in ''n''-dim ...
to the opposite vertex), the
perpendicular bisector In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a ''bisector''. The most often considered types of bisectors are the ''se ...
s of the sides (perpendicularly connecting the midpoint of a side to one of the other sides), and the internal angle bisectors (each connecting a vertex to the opposite side). In each case, there are various equalities relating these segment lengths to others (discussed in the articles on the various types of segment), as well as various inequalities. Other segments of interest in a triangle include those connecting various
triangle center In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, ...
s to each other, most notably the
incenter In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bis ...
, the
circumcenter In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcen ...
, the
nine-point center In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle ...
, the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the figure. The same definition extends to any object in n-d ...
and the
orthocenter The orthocenter of a triangle, usually denoted by , is the point (geometry), point where the three (possibly extended) altitude (triangle), altitudes intersect. The orthocenter lies inside the triangle if and only if the triangle is acute trian ...
.


Quadrilaterals

In addition to the sides and diagonals of a
quadrilateral In Euclidean geometry, geometry a quadrilateral is a four-sided polygon, having four Edge (geometry), edges (sides) and four Vertex (geometry), corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''l ...
, some important segments are the two bimedians (connecting the midpoints of opposite sides) and the four maltitudes (each perpendicularly connecting one side to the midpoint of the opposite side).


Circles and ellipses

Any straight line segment connecting two points on a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
or
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
is called a chord. Any chord in a circle which has no longer chord is called a
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
, and any segment connecting the circle's center (the midpoint of a diameter) to a point on the circle is called a
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
. In an ellipse, the longest chord, which is also the longest
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
, is called the ''major axis'', and a segment from the midpoint of the major axis (the ellipse's center) to either endpoint of the major axis is called a ''semi-major axis''. Similarly, the shortest diameter of an ellipse is called the ''minor axis'', and the segment from its midpoint (the ellipse's center) to either of its endpoints is called a ''semi-minor axis''. The chords of an ellipse which are
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
to the major axis and pass through one of its
foci Focus (: foci or focuses) may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in East Australia Film * ''Focus'' (2001 film), a 2001 film based on the Arthur Miller novel * ''Focus'' (2015 film), a 201 ...
are called the latera recta of the ellipse. The ''interfocal segment'' connects the two foci.


Directed line segment

When a line segment is given an
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building des ...
( direction) it is called a directed line segment or oriented line segment. It suggests a
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
or
displacement Displacement may refer to: Physical sciences Mathematics and physics *Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path ...
(perhaps caused by a
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
). The magnitude and direction are indicative of a potential change. Extending a directed line segment semi-infinitely produces a '' directed half-line'' and infinitely in both directions produces a ''
directed line The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed ...
''. This suggestion has been absorbed into
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
through the concept of a
Euclidean vector In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scal ...
. The collection of all directed line segments is usually reduced by making equipollent any pair having the same length and orientation.Eutiquio C. Young (1978) ''Vector and Tensor Analysis'', pages 2 & 3,
Marcel Dekker Marcel Dekker was a journal and encyclopedia publishing company with editorial boards found in New York City. Dekker encyclopedias are now published by CRC Press, part of the Taylor and Francis publishing group. History Initially a textbook publ ...
This application of an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
was introduced by
Giusto Bellavitis Giusto Bellavitis (22 November 1803 – 6 November 1880) was an Italian mathematician, senator, and municipal councilor. Charles Laisant (1880) "Giusto Bellavitis. Nécrologie", ''Bulletin des sciences mathématiques et astronomiques'', 2nd ...
in 1835.


Generalizations

Analogous to
straight line In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimens ...
segments above, one can also define arcs as segments of a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
. In one-dimensional space, a ''
ball A ball is a round object (usually spherical, but sometimes ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used for s ...
'' is a line segment. An oriented plane segment or ''
bivector In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is of ...
'' generalizes the directed line segment. Beyond Euclidean geometry, geodesic segments play the role of line segments. A line segment is a one-dimensional ''
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
''; a two-dimensional simplex is a triangle.


Types of line segments

*
Chord (geometry) A chord (from the Latin ''chorda'', meaning " bowstring") of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a ''secant l ...
*
Diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
*
Radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...


See also

*
Polygonal chain In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (A_1, A_2, \dots, A_n) called its vertices. The curve itself consists of the line segments co ...
*
Interval (mathematics) In mathematics, a real interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. A real ...
* Line segment intersection, the algorithmic problem of finding intersecting pairs in a collection of line segments


Notes


References

*
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
''The Foundations of Geometry''. The Open Court Publishing Company 1950, p. 4


External links

*
Line Segment
at
PlanetMath PlanetMath is a free content, free, collaborative, mathematics online encyclopedia. Intended to be comprehensive, the project is currently hosted by the University of Waterloo. The site is owned by a US-based nonprofit corporation, "PlanetMath.org ...

Copying a line segment with compass and straightedge


Animated demonstration {{Authority control Elementary geometry Linear algebra Line (geometry)