HOME

TheInfoList



OR:

A frequently studied problem in discrete geometry is to identify ways in which an object can be covered by other simpler objects such as points, lines, and planes. In projective geometry, a specific instance of this problem that has numerous applications is determining whether, and how, a projective space can be covered by pairwise disjoint subspaces which have the same dimension; such a partition is called a spread. Specifically, a spread of a projective space PG(d,K), where d \geq 1 is an integer and K a division ring, is a set of r-dimensional subspaces, for some 0 < r < d such that every point of the space lies in exactly one of the elements of the spread. Spreads are particularly well-studied in projective geometries over finite fields, though some notable results apply to infinite projective geometries as well. In the finite case, the foundational work on spreads appears in André and independently in Bruck-Bose in connection with the theory of translation planes. In these papers, it is shown that a spread of r-dimensional subspaces of the finite projective space PG(d,q) exists if and only if r+1 \mid d+1.


Spreads and translation planes

For all integers n \geq 1, the projective space PG(2n+1,q) always has a spread of n-dimensional subspaces, and in this section the term spread refers to this specific type of spread; spreads of this form may (and frequently do) occur in infinite projective geometries as well. These spreads are the most widely studied in the literature, due to the fact that every such spread can be used to create a translation plane using the André/Bruck-Bose construction.


Reguli and regular spreads

Let \Sigma be the
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
PG(2n+1,K) for n \geq 1 an integer, and K a division ring. A ''
regulus Regulus is the brightest object in the constellation Leo and one of the brightest stars in the night sky. It has the Bayer designation designated α Leonis, which is Latinized to Alpha Leonis, and abbreviated Alpha Leo or α Leo. Re ...
'' R in \Sigma is a collection of pairwise disjoint n-dimensional subspaces with the following properties: # R contains at least 3 elements # Every line meeting three elements of R, called a '' transversal'', meets every element of R # Every point of a transversal to R lies on some element of R Any three pairwise disjoint n-dimensional subspaces in \Sigma lie in a unique regulus. A spread S of \Sigma is ''regular'' if for any three distinct n-dimensional subspaces of S, all the members of the unique regulus determined by them are contained in S. Regular spreads are significant in the theory of translation planes, in that they generate Moufang planes in general, and Desarguesian planes in the finite case when the order of the ambient field is greater than 2. All spreads of PG(2n+1,2) are trivially regular, since a regulus only contains three elements.


Constructing a regular spread

Construction of a regular spread is most easily seen using an algebraic model. Letting V be a (2n+2)-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
over a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
F, one can model the k-dimensional subspaces of PG(2n+1,F) using the (k+1)-dimensional subspaces of V; this model uses
homogeneous coordinates In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. T ...
to represent points and hyperplanes. Incidence is defined by intersection, with subspaces intersecting in only the zero vector considered disjoint; in this model, the zero vector of V is effectively ignored. Let F be a field and E an n-dimensional extension field of F. Consider V = E \oplus E as a 2n-dimensional vector space over F, which provides a model for the projective space PG(2n-1,F) as above. Each element of V can be written uniquely as (x,y) where x,y \in E. A regular spread is given by the set of n-dimensional projective spaces defined by J(k) = \, for each k \in E, together with J(\infty) = \.


Constructing spreads


Spread sets

The construction of a regular spread above is an instance of a more general construction of spreads, which uses the fact that field multiplication is a linear transformation over E when considered as a vector space. Since E is a finite n-dimensional extension over F, a linear transformation from E to itself can be represented by an n \times n matrix with entries in F. A ''spread set'' is a set S of n \times n matrices over F with the following properties: * S contains the zero matrix and the identity matrix * For any two distinct matrices X and Y in S, X-Y is nonsingular * For each pair of elements a,b \in E, there is a unique X \in S such that aX = b In the finite case, where E is the field of order q^n for some prime power q, the last condition is equivalent to the spread set containing q^n matrices. Given a spread set S, one can create a spread as the set of n-dimensional projective spaces defined by J(k) = \, for each M \in S, together with J(\infty) = \, As a specific example, the following nine matrices represent GF(9) as 2 × 2 matrices over GF(3) and so provide a spread set of AG(2, 9). : \left \begin 0 & 0 \\ 0 & 0 \end \right \left \begin 1 & 0 \\ 0 & 1 \end \right \left \begin 2 & 0 \\ 0 & 2 \end \right \left \begin 0 & 1 \\ 2 & 0 \end \right \left \begin 1 & 1 \\ 2 & 1 \end \right \left \begin 2 & 1 \\ 2 & 2 \end \right \left \begin 0 & 2 \\ 1 & 0 \end \right \left \begin 1 & 2 \\ 1 & 1\end \right \left \begin 2 & 2 \\ 2 & 1 \end \right /math> Another example of a spread set yields the
Hall plane of order 9 In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order ''p''2''n'' for every prime ''p'' and every positive integer ''n'' provided ''p''2''n'' > 4. Algebraic cons ...
: \left \begin 0 & 0 \\ 0 & 0 \end \right \left \begin 1 & 0 \\ 0 & 1 \end \right \left \begin 2 & 0 \\ 0 & 2 \end \right \left \begin 1 & 1 \\ 1 & 2 \end \right \left \begin 2 & 2 \\ 2 & 1 \end \right \left \begin 0 & 1 \\ 2 & 0 \end \right \left \begin 0 & 2 \\ 1 & 0 \end \right \left \begin 1 & 2 \\ 2 & 2\end \right \left \begin 2 & 1 \\ 1 & 1 \end \right /math>


Modifying spreads

One common approach to creating new spreads is to start with a regular spread and modify it in some way. The techniques presented here are some of the more elementary examples of this approach.


Spreads of 3-space

One can create new spreads by starting with a spread and looking for a ''switching set'', a subset of its elements that can be replaced with an alternate set of pairwise disjoint subspaces of the correct dimension. In PG(3,K), a
regulus Regulus is the brightest object in the constellation Leo and one of the brightest stars in the night sky. It has the Bayer designation designated α Leonis, which is Latinized to Alpha Leonis, and abbreviated Alpha Leo or α Leo. Re ...
forms a switching set, as the set of transversals of a regulus R also form a regulus, called the ''opposite regulus'' of R. Removing the lines of a regulus in a spread and replacing them with the opposite regulus produces a new spread which is often non-isomorphic to the original. This process is a special case of a more general process called ''derivation'' or ''net replacement''. Starting with a regular spread of PG(3,q) and reversing any regulus produces a spread that yields a
Hall plane In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order ''p''2''n'' for every prime ''p'' and every positive integer ''n'' provided ''p''2''n'' > 4. Algebraic cons ...
. In more generality, the process can be applied independently to any collection of reguli in a regular spread, yielding a ''subregular spread''; the resulting translation plane is called a subregular plane. The André planes form a special subclass of subregular planes, of which the
Hall plane In mathematics, a Hall plane is a non-Desarguesian projective plane constructed by Marshall Hall Jr. (1943). There are examples of order ''p''2''n'' for every prime ''p'' and every positive integer ''n'' provided ''p''2''n'' > 4. Algebraic cons ...
s are the simplest examples, arising by replacing a single regulus in a regular spread. More complex switching sets have been constructed. Bruen has explored the concept of a ''chain'' of reguli in a regular spread of PG(3,q), q odd, namely a set of (q+3)/2 reguli which pairwise meet in exactly 2 lines, so that every line contained in a regulus of the chain is contained in exactly two distinct reguli of the chain. Bruen constructed an example of a chain in the regular spread of PG(3,5), and showed that it could be replaced by taking the union of exactly half of the lines from the opposite regulus of each regulus in the chain. Numerous examples of Bruen chains have appeared in the literature since, and Heden has shown that any Bruen chain is replaceable using opposite half-reguli. Chains are known to exist in a regular spread of PG(3,q) for all odd prime powers q up to 37, except 29, and are known not to exist for q \in \. It is conjectured that no additional Bruen chains exist. Baker and Ebert generalized the concept of a chain to a ''nest'', which is a set of reguli in a regular spread such that every line contained in a regulus of the nest is contained in exactly two distinct reguli of the nest. Unlike a chain, two reguli in a nest are not required to meet in a pair of lines. Unlike chains, a nest in a regular spread need not be replaceable, however several infinite families of replaceable nests are known.


Higher-dimensional spreads

In higher dimensions a regulus cannot be reversed because the transversals do not have the correct dimension. There exist analogs to reguli, called ''norm surfaces'', which can be reversed. The higher-dimensional André planes can be obtained from spreads obtained by reversing these norm surfaces, and there also exist analogs of subregular spreads which do not give rise to André planes.


Geometric techniques

There are several known ways to construct spreads of PG(3,q) from other geometrical objects without reference to an initial regular spread. Some well-studied approaches to this are given below.


Flocks of quadratic cones

In PG(3,q), a ''quadratic cone'' is the union of the set of lines containing a fixed point P (the ''vertex'') and a point on a conic in a plane not passing through P. Since a conic has q+1 points, a quadratic cone has q(q+1)+1 points. As with traditional geometric
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
s, a plane of PG(3,q) can meet a quadratic cone in either a point, a conic, a line or a line pair. A ''flock'' of a quadratic cone is a set of q planes whose intersections with the quadratic cone are pairwise disjoint conics. The classic construction of a flock is to pick a line m that does not meet the quadratic cone, and take the q planes through m that do not contain the vertex of the cone; such a flock is called ''linear''. Fisher and Thas show how to construct a spread of PG(3,q) from a flock of a quadratic cone using the Klein correspondence, and show that the resulting spread is regular if and only if the initial flock is linear. Many infinite families of flocks of quadratic cones are known, as are numerous sporadic examples. Every spread arising from a flock of a quadratic cone is the union of q reguli which all meet in a fixed line m. Much like with a regular spread, any of these reguli can be replaced with its opposite to create several potentially new spreads.


Hyperbolic fibrations

In PG(3,q) a hyperbolic fibration is a partition of the space into q-1 pairwise disjoint hyperbolic quadrics and two lines disjoint from all of the quadrics and each other. Since a hyperbolic quadric consists of the points covered by a regulus and its opposite, a hyperbolic fibration yields 2^ different spreads. All spreads yielding André planes, including the regular spread, are obtainable from a hyperbolic fibration (specifically an algebraic pencil generated by any two of the quadrics), as articulated by André. Using nest replacement, Ebert found a family of spreads in which a hyperbolic fibration was identified. Baker, et al. provide an explicit example of a construction of a hyperbolic fibration. A much more robust source of hyperbolic fibrations was identified by Baker, et al., where the authors developed a correspondence between flocks of quadratic cones and hyperbolic fibrations; interestingly, the spreads generated by a flock of a quadratic cone are not generally isomorphic to the spreads generated from the corresponding hyperbolic fibration.


Subgeometry partitions

Hirschfeld and Thas note that for any odd integer n \geq 3, a partition of PG(n-1,q^2) into subgeometries isomorphic to PG(n-1,q) gives rise to a spread of PG(2n-1,q), where each subgeometry of the partition corresponds to a regulus of the new spread. The "classical" subgeometry partitions of PG(n-1,q^2) can be generated using suborbits of a Singer cycle, but this simply generates a regular spread. Yff published the non-classical subgeometry partition, namely a partition of PG(2,9) into 7 copies of PG(2,3), that admit a cyclic group permuting the subplanes. Baker, et al. provide several infinite families of partitions of PG(2,q^2) into subplanes, with the same cyclic group action.


Partial spreads

A ''partial spread'' of a
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
PG(d,K) is a set of pairwise disjoint r-dimensional subspaces in the space; hence a spread is just a partial spread where every point of the space is covered. A partial spread is called ''complete'' or ''maximal'' if there is no larger partial spread that contains it; equivalently, there is no r-dimensional subspace disjoint from all members of the partial spread. As with spreads, the most well-studied case is partial spreads of lines of the finite projective space PG(3,q), where a full spread has size q^2+1. Mesner showed that any partial spread of lines in PG(3,q) with size greater than q^2 - \sqrt cannot be complete; indeed, it must be a subset of a unique spread. For a lower bound, Bruen showed that a complete partial spread of lines in PG(3,q) with size at most q+\sqrt lines cannot be complete; there will necessarily be a line that can be added to a partial spread of this size. Bruen also provides examples of complete partial spreads of lines in PG(3,q) with sizes q^2-q+1 and q^2-q+2 for all q > 2.


Spreads of classical polar spaces

The classical polar spaces are all embedded in some projective space PG(d,K) as the set of totally isotropic subspaces of a
sesquilinear In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows ...
or
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a ...
on the vector space underlying the projective space. A particularly interesting class of partial spreads of PG(d,K) are those that consist strictly of maximal subspaces of a classical polar space embedded in the projective space. Such partial spreads that cover all of the points of the polar space are called ''spreads'' of the polar space. From the perspective of the theory of translation planes, the symplectic polar space is of particular interest, as its set of points are all of the points in PG(2n+1,K), and its maximal subspaces are of dimension n. Hence a spread of the symplectic polar space is also a spread of the entire projective space, and can be used as noted above to create a translation plane. Several examples of symplectic spreads are known; see Ball, et al.


References

{{reflist Projective geometry