In
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, solvent effects are the influence of a
solvent
A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
on
chemical reactivity or molecular associations. Solvents can have an effect on
solubility
In chemistry, solubility is the ability of a chemical substance, substance, the solute, to form a solution (chemistry), solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form su ...
,
stability and
reaction rates and choosing the appropriate solvent allows for
thermodynamic and kinetic control over a chemical reaction.
A
solute dissolves in a solvent when solvent-solute interactions are more favorable than solute-solute interaction.
Effects on stability
Different solvents can affect the
equilibrium constant
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
of a reaction by differential stabilization of the reactant or product. The equilibrium is shifted in the direction of the substance that is preferentially stabilized.
Stabilization of the reactant or product can occur through any of the different
non-covalent interactions with the solvent such as
H-bonding, dipole-dipole interactions,
van der Waals interactions etc.
Acid-base equilibria
The ionization equilibrium of an acid or a base is affected by a solvent change. The effect of the solvent is not only because of its acidity or basicity but also because of its
dielectric constant
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insul ...
and its ability to preferentially solvate and thus stabilize certain species in acid-base equilibria. A change in the solvating ability or dielectric constant can thus influence the acidity or basicity.
In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then
acetonitrile
Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula and structure . This colourless liquid is the simplest organic nitrile (hydrogen cyanide is a simpler nitrile, but the cyanide anion is not class ...
. Consider the following acid dissociation equilibrium:
:HA A
− + H
+
Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile. Ionization - and, thus, acidity - would be greatest in water and lesser in DMSO and Acetonitrile, as seen in the table below, which shows p''K''
a values at 25 °C for acetonitrile (ACN)
[
] and dimethyl sulfoxide (DMSO) and water.
Keto–enol equilibria

Many
carbonyl compounds exhibit
keto–enol tautomerism. This effect is especially pronounced in
1,3-dicarbonyl compounds that can form
hydrogen-bonded enols. The
equilibrium constant
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
is dependent upon the solvent polarity, with the ''cis''-enol form predominating at low polarity and the diketo form predominating at high polarity. The
intramolecular H-bond formed in the ''cis''-enol form is more pronounced when there is no competition for
intermolecular H-bonding with the solvent. As a result, solvents of low polarity that do not readily participate in H-bonding allow ''cis''-enolic stabilization by intramolecular H-bonding.
Effects on reaction rates
Often, reactivity and reaction mechanisms are pictured as the behavior of isolated molecules in which the solvent is treated as a passive support. However, the nature of the solvent can actually influence reaction rates and order of a chemical reaction.
Performing a reaction without solvent can affect reaction-rate for reactions with
bimolecular
In chemistry, molecularity is the number of molecules that come together to react in an elementary reaction, elementary (single-step) reactionAtkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014 and is equal to the sum of Sto ...
mechanisms, for example, by maximizing the
concentration
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
of the reagents.
Ball milling is one of several
mechanochemical techniques where physical methods are used to control reactions in the absence of solvent.
Equilibrium-solvent effects
Solvents can affect rates through equilibrium-solvent effects that can be explained on the basis of the
transition state theory. In essence, the reaction rates are influenced by differential solvation of the starting material and transition state by the solvent. When the reactant molecules proceed to the transition state, the solvent molecules orient themselves to stabilize the transition state. If the transition state is stabilized to a greater extent than the starting material then the reaction proceeds faster. If the starting material is stabilized to a greater extent than the transition state then the reaction proceeds slower. However, such differential solvation requires rapid reorientational relaxation of the solvent (from the transition state orientation back to the ground-state orientation). Thus, equilibrium-solvent effects are observed in reactions that tend to have sharp barriers and weakly dipolar, rapidly relaxing solvents.
Frictional solvent effects
The equilibrium hypothesis does not stand for very rapid chemical reactions in which the transition state theory breaks down. In such cases involving strongly dipolar, slowly relaxing solvents, solvation of the transition state does not play a very large role in affecting the reaction rate. Instead, dynamic contributions of the solvent (such as
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
,
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, internal pressure, or
viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
) play a large role in affecting the reaction rate.
Hughes–Ingold rules
The effect of solvent on elimination and nucleophillic substitution reactions was originally studied by British chemists
Edward D. Hughes and
Christopher Kelk Ingold. Using a simple solvation model that considered only pure electrostatic interactions between ions or dipolar molecules and solvents in initial and transition states, all nucleophilic and elimination reactions were organized into different charge types (neutral, positively charged, or negatively charged).
[
Hughes and Ingold then made certain assumptions about the extent of solvation to be expected in these situations:
* increasing magnitude of charge will increase solvation
* increasing delocalization will decrease solvation
* loss of charge will decrease solvation more than the dispersal of charge ][
The applicable effect of these general assumptions are shown in the following examples:
* An increase in solvent polarity accelerates the rates of reactions where a charge is developed in the activated complex from neutral or slightly charged reactant
* An increase in solvent polarity decreases the rates of reactions where there is less charge in the activated complex in comparison to the starting materials
* A change in solvent polarity will have little or no effect on the rates of reaction when there is little or no difference in charge between the reactants and the activated complex.][
]
Reaction examples
Substitution reactions
The solvent used in substitution reactions inherently determines the nucleophilicity of the nucleophile
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are ...
; this fact has become increasingly more apparent as more reactions are performed in the gas phase.
As such, solvent conditions significantly affect the performance of a reaction with certain solvent conditions favoring one reaction mechanism over another. For SN1 reactions the solvent's ability to stabilize the intermediate carbocation is of direct importance to its viability as a suitable solvent. The ability of polar solvents to increase the rate of SN1 reactions is a result of the polar solvent's solvating the reactant intermediate species, i.e., the carbocation, thereby decreasing the intermediate energy relative to the starting material. The following table shows the relative solvolysis rates of ''tert''-butyl chloride with acetic acid
Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
(CH3CO2H), methanol
Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
(CH3OH), and water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
(H2O).
The case for SN2 reactions is quite different, as the lack of solvation on the nucleophile increases the rate of an SN2 reaction. In either case (SN1 or SN2), the ability to either stabilize the transition state (SN1) or destabilize the reactant starting material (SN2) acts to decrease the ΔG‡activation and thereby increase the rate of the reaction. This relationship is according to the equation ΔG = –RT ln K (Gibbs free energy
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–v ...
). The rate equation for SN2 reactions are bimolecular
In chemistry, molecularity is the number of molecules that come together to react in an elementary reaction, elementary (single-step) reactionAtkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014 and is equal to the sum of Sto ...
being first order in Nucleophile and first order in Reagent. The determining factor when both SN2 and SN1 reaction mechanisms are viable is the strength of the Nucleophile. Nuclephilicity and basicity are linked and the more nucleophilic a molecule becomes the greater said nucleophile's basicity. This increase in basicity causes problems for SN2 reaction mechanisms when the solvent of choice is protic. Protic solvents react with strong nucleophiles with good basic character in an acid/base fashion, thus decreasing or removing the nucleophilic nature of the nucleophile. The following table shows the effect of solvent polarity on the relative reaction rates of the SN2 reaction of 1-bromobutane with azide
In chemistry, azide (, ) is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant ...
(N3–). There is a noticeable increase in reaction rate when changing from a protic solvent to an aprotic solvent. This difference arises from acid/base reactions between protic solvents (not aprotic solvents) and strong nucleophiles. While it is true that steric effects
Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is generally a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape (conformational isomerism, co ...
also affect the relative reaction rates, however, for demonstration of principle for solvent polarity on SN2 reaction rates, steric effects may be neglected.
A comparison of SN1 to SN2 reactions is to the right. On the left is an SN1 reaction coordinate diagram. Note the decrease in ΔG‡activation for the polar-solvent reaction conditions. This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔEa, ΔΔG‡activation. On the right is an SN2 reaction coordinate diagram. Note the decreased ΔG‡activation for the non-polar-solvent reaction conditions. Polar solvents stabilize the reactants to a greater extent than the non-polar-solvent conditions by solvating the negative charge on the nucleophile, making it less available to react with the electrophile.
700 px, center, Solvent effects on SN1 and SN2 reactions
Transition-metal-catalyzed reactions
The reactions involving charged transition metal complexes (cationic or anionic) are dramatically influenced by solvation, especially in the polar media. As high as 30-50 kcal/mol changes in the potential energy surface (activation energies and relative stability) were calculated if the charge of the metal species was changed during the chemical transformation.
Free radical syntheses
Many free radical-based syntheses show large kinetic solvent effects that can reduce the rate of reaction and cause a planned reaction to follow an unwanted pathway.
See also
* Cage effect
References
{{Reaction mechanisms
Physical chemistry
Reaction mechanisms