HOME

TheInfoList



OR:

A solar cell panel, solar electric panel, photo-voltaic (PV) module, PV panel or solar panel is an assembly of photovoltaic
solar cell A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.photovoltaic system or solar array. Solar panels capture sunlight as a source of radiant energy, which is converted into electric energy in the form of
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or eve ...
(DC) electricity. Arrays of a photovoltaic system can be used to generate solar electricity that supplies electrical equipment directly, or feeds power back into an alternate current (AC) grid via an inverter system.


History

In 1839, the ability of some materials to create an electrical charge from light exposure was first observed by the French physicist Edmond Becquerel. Though these initial solar panels were too inefficient for even simple electric devices, they were used as an instrument to measure light. The observation by Becquerel was not replicated again until 1873, when the English electrical engineer Willoughby Smith discovered that the charge could be caused by light hitting selenium. After this discovery, William Grylls Adams and Richard Evans Day published "The action of light on selenium" in 1876, describing the experiment they used to replicate Smith's results. In 1881, the American inventor Charles Fritts created the first commercial solar panel, which was reported by Fritts as "continuous, constant and of considerable force not only by exposure to sunlight but also to dim, diffused daylight." However, these solar panels were very inefficient, especially compared to coal-fired power plants. In 1939, Russell Ohl created the solar cell design that is used in many modern solar panels. He patented his design in 1941. In 1954, this design was first used by
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
to create the first commercially viable silicon solar cell. Solar panel installers saw significant growth between 2008 and 2013. Due to that growth many installers had projects that were not "ideal" solar roof tops to work with and had to find solutions to shaded roofs and orientation difficulties. This challenge was initially addressed by the re-popularization of micro-inverters and later the invention of power optimizers. Solar panel manufacturers partnered with micro-inverter companies to create AC modules and power optimizer companies partnered with module manufacturers to create smart modules. In 2013 many solar panel manufacturers announced and began shipping their smart module solutions.


Theory and construction

Photovoltaic modules consist of a large number of solar cells and use light energy (
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
s) from the Sun to generate electricity through the photovoltaic effect. Most modules use wafer-based crystalline silicon cells or thin-film cells. The structural ( load carrying) member of a module can be either the top layer or the back layer. Cells must be protected from mechanical damage and moisture. Most modules are rigid, but semi-flexible ones based on thin-film cells are also available. The cells are usually connected electrically in series, one to another to the desired voltage, and then in parallel to increase current. The power (in
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wa ...
s) of the module is the mathematical product of the voltage (in volts) and the current (in
ampere The ampere (, ; symbol: A), often Clipping (morphology), shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One amp ...
s), and depends both on the amount of light and on the electrical load connected to the module. The manufacturing specifications on solar panels are obtained under standard conditions, which are usually not the true operating conditions the solar panels are exposed to on the installation site. A PV junction box is attached to the back of the solar panel and functions as its output interface. External connections for most photovoltaic modules use MC4 connectors to facilitate easy weatherproof connections to the rest of the system. A USB power interface can also be used. Solar panels also use metal frames consisting of racking components, brackets, reflector shapes, and troughs to better support the panel structure.


Cell connection techniques

In solar modules, the cells themselves need to be connected together to form the module, with front electrodes blocking the solar cell front optical surface area slightly. To maximize frontal surface area available for sunlight and improve solar cell efficiency, manufacturers use varying rear electrode solar cell connection techniques: * Passivated emitter rear contact (PERC) adds a polymer film to capture light * Tunnel oxide passivated contact (TOPCon) adds an oxidation layer to the PERC film to capture more light * Interdigitated bulk contact (IBC)


Arrays of PV modules

A single solar module can produce only a limited amount of power; most installations contain multiple modules adding their voltages or currents. A photovoltaic system typically includes an array of photovoltaic modules, an inverter, a battery pack for energy storage, a charge controller, interconnection wiring, circuit breakers, fuses, disconnect switches, voltage meters, and optionally a solar tracking mechanism. Equipment is carefully selected to optimize output, and energy storage, reduce power loss during power transmission, and convert from direct current to alternating current.


Smart solar modules

Smart modules are different from traditional solar panels because the power electronics embedded in the module offers enhanced functionality such as panel-level maximum power point tracking, monitoring, and enhanced safety. Power electronics attached to the frame of a solar module, or connected to the photovoltaic circuit through a connector, are not properly considered smart modules. Several companies have begun incorporating into each PV module various embedded power electronics such as: * Maximum power point tracking (, MPPT) power optimizers, a DC-to-DC converter technology developed to maximize the power harvest from solar photovoltaic systems by compensating for shading effects, wherein a shadow falling on a section of a module causes the electrical output of one or more strings of cells in the module to fall to near zero, but not having the output of the entire module fall to zero. *
Solar performance monitor Photovoltaic system performance is a function of the climatic conditions, the equipment used and the system configuration. PV performance can be measured as the ratio of actual solar PV system output vs expected values, the measurement being essent ...
s for data and fault detection


Technology

Most solar modules are currently produced from crystalline silicon (c-Si) solar cells made of polycrystalline or monocrystalline silicon. In 2013, crystalline silicon accounted for more than 90% of worldwide PV production, while the rest of the overall market is made up of thin-film technologies using cadmium telluride (CdTe), copper indium gallium selenide (CIGS) and
amorphous silicon Amorphous silicon (a-Si) is the non- crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films ...
. Emerging, third-generation solar technologies use advanced thin-film cells. They produce a relatively high-efficiency conversion for a lower cost compared with other solar technologies. Also, high-cost, high-efficiency, and close-packed rectangular multi-junction (MJ) cells are usually used in solar panels on spacecraft, as they offer the highest ratio of generated power per kilogram lifted into space. MJ-cells are compound semiconductors and made of gallium arsenide (GaAs) and other semiconductor materials. Another emerging PV technology using MJ-cells is concentrator photovoltaics (CPV).


Thin film

In rigid thin-film modules, the cell and the module are manufactured on the same production line. The cell is created on a glass
substrate Substrate may refer to: Physical layers *Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached ** Substrate (locomotion), the surface over which an organism lo ...
or superstrate, and the electrical connections are created ''in situ'', a so-called "monolithic integration." The substrate or superstrate is laminated with an encapsulant to a front or back sheet, usually another sheet of glass. The main cell technologies in this category are CdTe, , a-Si+uc-Si tandem, and CIGS. Amorphous silicon has a sunlight conversion rate of 6–12%. Flexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate. If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used. If it is a conductor then another technique for electrical connection must be used. The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side, typically ethylene tetrafluoroethylene (ETFE) or fluorinated ethylene propylene (FEP), and a polymer suitable for bonding to the final substrate on the other side.


Mounting and tracking


Ground

Large utility-scale solar power plants usually use ground-mounted photovoltaic systems. Their solar modules are held in place by racks or frames that are attached to ground-based mounting supports. Ground based