A Snellen chart is an
eye chart
__NOTOC__
An eye chart is a chart used to measure visual acuity comprising lines of optotypes in ranges of sizes. Optotypes are the letters or symbols shown on an eye chart. Eye charts are often used by health care professionals, such as optometr ...
that can be used to measure
visual acuity
Visual acuity (VA) commonly refers to the clarity of visual perception, vision, but technically rates an animal's ability to recognize small details with precision. Visual acuity depends on optical and neural factors. Optical factors of the eye ...
. Snellen charts are named after the Dutch
ophthalmologist
Ophthalmology (, ) is the branch of medicine that deals with the diagnosis, treatment, and surgery of eye diseases and disorders.
An ophthalmologist is a physician who undergoes subspecialty training in medical and surgical eye care. Following a ...
Herman Snellen who developed the chart in 1862 as a measurement tool for the acuity formula developed by his professor
Franciscus Cornelius Donders.
Many ophthalmologists and vision scientists now use an improved chart known as the
LogMAR chart
A logMAR chart is a chart consisting of rows of letters that is used by ophthalmologists, orthoptists, optometrists, and vision scientists to estimate visual acuity. The name of the chart is an abbreviation for "logarithm of the Minimum Angle ...
.
History
Snellen developed charts using symbols based in a 5×5 unit grid. The experimental charts developed in 1861 used abstract symbols.
Snellen's charts published in 1862 used alphanumeric capitals in the 5×5 grid. The original chart shows A, C, E, G, L, N, P, R, T, 5, V, Z, B, D, 4, F, H, K, O, S, 3, U, Y, A, C, E, G, L, 2.
Description
The normal Snellen chart is printed with eleven lines of block letters. The first line
consists of one very large letter, which may be one of several letters, for example E, H, or N. Subsequent rows have increasing numbers of letters that decrease in size. A person taking the test covers one
eye
An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system.
In higher organisms, the ey ...
from 6 metres or 20 feet away, and reads aloud the letters of each row, beginning at the top. The smallest row that can be read accurately indicates the visual acuity in that specific eye.
The symbols on an acuity chart are formally known as "
optotypes".

In the case of the traditional Snellen chart, the optotypes have the appearance of block letters, and are intended to be seen and read as letters. They are not, however, letters from any ordinary typographer's font. They have a particular, simple geometry in which:
* the thickness of the lines equals the thickness of the white spaces between lines and the thickness of the gap in the letter "C"
* the height and width of the optotype (letter) is five times the thickness of the line.
Only the nine letters C, D, E, F, L, O, P, T, Z are used in the common Snellen chart. The perception of five out of six letters (or similar ratio) is judged to be the Snellen fraction.
Wall-mounted Snellen charts are inexpensive and are sometimes used for approximate assessment of vision, e.g. in a primary-care physician's office. Whenever acuity must be assessed carefully (as in an eye doctor's examination), or where there is a possibility that the examinee might attempt to deceive the examiner (as in a motor vehicle license office), equipment is used that can present the letters in a variety of randomized patterns.
BS 4274-1:1968 (British Standards Institution) "Specification for test charts for determining distance visual acuity" was replaced by BS 4274-1:2003 "Test charts for clinical determination of distance visual acuity — Specification". It states that "the luminance of the presentation shall be uniform and not less than 120 cd/m
2. Any variation across the test chart shall not exceed 20 %."
According to BS 4274-1:2003 only the letters C, D, E, F, H, K, N, P, R, U, V, and Z should be used for the testing of vision based upon equal legibility of the letters.
Snellen fraction
Visual acuity
Visual acuity (VA) commonly refers to the clarity of visual perception, vision, but technically rates an animal's ability to recognize small details with precision. Visual acuity depends on optical and neural factors. Optical factors of the eye ...
is the distance at which test is made / distance at which the smallest
optotype identified
subtends an angle of five
arcminutes
A minute of arc, arcminute (abbreviated as arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of a degree. Since one degree is of a turn, or complete rotation, one arcminute is of a tu ...
and the critical distinguishing features of the optotype subtend an angle of one arcminute.
"6/6"(m) or "20/20"(ft) vision
Snellen defined "standard vision" as the ability to recognize one of his optotypes when it subtended 5 minutes of arc. Thus the optotype can only be recognized if the person viewing it can discriminate a spatial pattern separated by a
visual angle of one
minute of arc
A minute of arc, arcminute (abbreviated as arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of a degree. Since one degree is of a turn, or complete rotation, one arcminute is of a tu ...
.
Outside the United States, the standard chart distance is , and normal acuity is designated "6/6". Other acuities are expressed as ratios with a numerator of 6. Some clinics do not have 6-metre eye lanes available, and either a half-size chart subtending the same angles at , or a reversed chart projected and viewed by a mirror is used to achieve the correct sized letters.
In the most familiar acuity test, a Snellen chart is placed at a standard distance: 6 metres. At this distance, the symbols on the line representing "normal" acuity subtend an angle of five minutes of arc, and the thickness of the lines and of the spaces between the lines subtends one minute of arc. This line, designated 6/6 (or 20/20), is the smallest line that a person with normal acuity can read at a distance of 6 metres. This definition is arbitrary, since human eyes typically have higher acuity, as Tscherning writes, "We have found also that the best eyes have a visual acuity which approaches 2, and we can be almost certain that if, with a good illumination, the acuity is only equal to 1, the eye presents defects sufficiently pronounced to be easily established."
Three lines above, the letters have twice the height of those letters on the 6/6 (or 20/20 in the US) line. If this is the smallest line a person can read, the person's acuity is "6/12" ("20/40"), meaning that this person needs to approach to a distance of to read letters that a person with normal acuity could read at . In an even more approximate manner, this person could be said to have "half" the normal acuity of 6/6.
At exactly 6 metres' distance from the patient, the letters on the 6/6 line shall subtend 5 minutes of arc (such that the individual limbs of the letters subtend 1 minute of arc), which means that the chart should be sized such that these letters are 8.73 mm tall and the topmost (6/60) "E" should be 87.3 mm tall. Putting it another way, the eye should be at a distance 68.76 times the height of the top (6/60) letter. The formula is
where
is the optotype height or width (which are the same due to the optotype being on a square grid),
is the distance from eye to chart, and
is the angle subtended by the optotype, which is 5 arcminutes as specified by Snellen. Another calculation for United States clinics using 20-foot chart distances (slightly more than 6 m), and using a 17 mm model eye for calculations, and a letter which subtends 5 minutes of arc, gives a vertical height of the 20/20 letter to be 8.75 mm.
20/20 Calculation, Dr. Craig Blackwell, MD
/ref>
Acuity charts are used during many kinds of vision examinations, such as "refracting" the eye to determine the best eyeglass prescription.
The largest letter on an eye chart often represents an acuity of 6/60 (20/200), the value that is considered "legally blind" in the US. Many individuals with high myopia
Myopia, also known as near-sightedness and short-sightedness, is an eye condition where light from distant objects focuses in front of, instead of on, the retina. As a result, distant objects appear blurry, while close objects appear normal. ...
cannot read the large E without glasses, but can read the 6/6 (20/20) line or 6/4.5 (20/15) line with glasses. By contrast, legally blind individuals have a visual acuity of 6/60 (20/200) or less when using the best corrective lens.
Electronic chart
To ensure adequate illumination of the Snellen charts, various medical device manufacturers had developed Snellen chart products with backlight or projection.
Digital chart
Since computer monitors typically have good lighting for reading and LCD/LED monitors have high DPI (between 96 and 480) they are suitable for displaying optotypes. Commonly digital chart products support randomizing optotypes displayed to prevent patients from memorizing lines they have previously read. In Google Play
Google Play, also known as the Google Play Store, Play Store, or sometimes the Android Store (and was formerly Android Market), is a digital distribution service operated and developed by Google. It serves as the official app store for certifie ...
and App Store (iOS)
The App Store is an app marketplace developed and maintained by Apple, for mobile apps on its iOS and iPadOS operating systems. The store allows users to browse and download approved apps developed within Apple's iOS SDK. Apps can be downlo ...
, there are Snellen chart apps for smart phones and tablets.
See also
* E chart
An E chart, also known as a tumbling E chart, is an eye chart used to measure a patient's visual acuity.
Uses
This chart does not depend on a patient's easy familiarity with a particular writing system (such as the Latin alphabet). This is oft ...
* Golovin–Sivtsev table
The Golovin–Sivtsev table () is a standardized table for testing visual acuity, which was developed in 1923 by Soviet ophthalmologists Sergei Golovin and D. A. Sivtsev. In the USSR, it was the most common table of its kind, and its use is still ...
* Jaeger chart
* Landolt C
* Lea test
The LEA Vision Test System is a series of pediatric vision tests designed specifically for children who do not know how to read the letters of the alphabet that are typically used in eye charts. There are numerous variants of the LEA test which c ...
* LogMAR chart
A logMAR chart is a chart consisting of rows of letters that is used by ophthalmologists, orthoptists, optometrists, and vision scientists to estimate visual acuity. The name of the chart is an abbreviation for "logarithm of the Minimum Angle ...
* Monoyer chart
* Sloan letters
* Visual acuity
Visual acuity (VA) commonly refers to the clarity of visual perception, vision, but technically rates an animal's ability to recognize small details with precision. Visual acuity depends on optical and neural factors. Optical factors of the eye ...
References
External links
* {{Commons category-inline, Snellen charts
Snellen Chart
Chart Projector
Acuity Pro
Visual Acuity Charts
Validation of a Portable Electronic Visual Acuity System
1862 introductions
Charts
Diagnostic ophthalmology
Dutch inventions
Medical tests
Optotypes
de:Sehschärfe#Sehprobentafeln