Sequential Infiltration Synthesis
   HOME

TheInfoList



OR:

Sequential infiltration synthesis (SIS) is a technique derived from
atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called wiktionary:precu ...
(ALD) in which a
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
is infused with
inorganic An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds⁠that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''. Inor ...
material using
sequential In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is call ...
, self-limiting exposures to
gaseous Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
precursors, enabling precise manipulation over the composition, structure, and properties. The technique has applications in fields such as nanotechnology, materials science, and electronics, where precise material engineering is required. This
synthesis Synthesis or synthesize may refer to: Science Chemistry and biochemistry *Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors **Organic synthesis, the chemical synthesis of organi ...
uses metal-organic vapor-phase precursors and co-reactants that dissolve and diffuse into
polymers A polymer () is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, b ...
. These precursors interact with the
functional groups In organic chemistry, a functional group is any substituent or moiety (chemistry), moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions r ...
of the polymers through reversible complex formation or irreversible
chemical reactions A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products ...
, resulting in
composite materials A composite or composite material (also composition material) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a ...
that can exhibit nano-structured properties. The metal-organic precursor (A) and co-reactant vapor (B) are supplied in an alternating ABAB sequence. Following SIS, the organic phase may be removed thermally or chemically to leave only the inorganic components behind. This approach facilitates the fabrication of materials with controlled properties such as
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography * Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
, stylometric,
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
, conductivity,
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
, and chemical functionality on the nano-scale. SIS has been utilized in fields, including
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
,
energy storage Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an Accumulator (energy), accumulator or Batte ...
, AI, and
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
, for its ability to modify material properties. SIS is sometimes referred to as "multiple pulsed vapor-phase infiltration" (MPI), "vapor phase infiltration" (VPI) or "sequential vapor infiltration" (SVI). SIS involves the 3D distribution of functional groups in
polymers A polymer () is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, b ...
, while its predecessor, ALD, is associated with the
two-dimensional A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimension ...
distribution of reactive sites on solid surfaces. In SIS, the partial pressures and exposure times for the precursor pulse are typically larger compared to ALD to ensure adequate infiltration of the precursor into the three-dimensional polymer volume through dissolution and
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
. The process relies on the diffusive transport of precursors within polymers, with the resulting distribution influenced by
time Time is the continuous progression of existence that occurs in an apparently irreversible process, irreversible succession from the past, through the present, and into the future. It is a component quantity of various measurements used to sequ ...
,
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
,
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
,
polymer chemistry Polymer chemistry is a sub-discipline of chemistry that focuses on the structures, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applic ...
, and micro-structure.


History

The diffusion of precursors below the surfaces of polymers during ALD was observed in 2005 by the Steven M. George group when they observed that polymers could uptake
trimethylaluminium Trimethylaluminium or TMA is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula (abbreviated as , where Me stands for methyl), as it exists as a dimer. This colorless liquid is pyrophoric. It is an ...
(TMA) via
absorption Absorption may refer to: Chemistry and biology *Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which su ...
within their free volume. In the study, the interactions between the ALD precursors and the polymer functional groups were not recognized, and the diffusion of precursors into polymer films was considered a problem. Hence, the diffusion and reactions of ALD precursors into polymer films were considered challenges to address rather than opportunities. However, potential benefits of these phenomena were demonstrated by Knez and coworkers in a 2009 report describing the increased toughness of
spider silk Spider silk is a protein fibre or silk spun by spiders. Spiders use silk to make webs or other structures that function as adhesive traps to catch prey, to entangle and restrain prey before biting, to transmit tactile information, or as nest ...
following vapor-phase infiltration. Sequential infiltration synthesis (SIS) was developed by
Argonne National Laboratory Argonne National Laboratory is a Federally funded research and development centers, federally funded research and development center in Lemont, Illinois, Lemont, Illinois, United States. Founded in 1946, the laboratory is owned by the United Sta ...
scientists Jeffrey Elam and Seth Darling in 2010 to synthesize nanoscopic materials starting from
block copolymer In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are som ...
templates. A patent application was filed in 2011 and the first patent was issued in 2016. SIS involves vapour diffusing into an existing polymer and chemically or physically binding to it. This results in the growth and formation of inorganic structures by selective nucleation throughout the bulk polymer. With SIS, the shapes of various inorganic materials can be tailored by applying their precursor chemistries to patterned or nano-structured organic polymers, such as block copolymers. SIS was developed to intentionally enable the infusion of inorganic materials such as metal oxides and metals within polymers to yield
hybrid material Hybrid materials are Composite material, composites consisting of two constituents at the nanometer or molecule, molecular level. Commonly one of these compounds is inorganic and the other one Organic compound, organic in nature. Thus, they diffe ...
s with enhanced properties. Hybrid materials created via SIS can further be subjected to
thermal annealing In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a materia ...
steps to remove the polymer constituents entirely to derive purely inorganic materials that maintain the structure of the original polymer morphology, including
mesoporosity A mesoporous material (or super nanoporous ) is a Nanoporous materials, nanoporous material containing wiktionary:pore, pores with diameters between 2 and 50 nm, according to International Union of Pure and Applied Chemistry, IUPAC nomenclat ...
. Although the early research in SIS focused on a small number of inorganic materials such as Al2O3, TiO2, and ZnO, the technology diversified over the next decade and came to include a wide variety of both inorganic materials and organic polymers, as detailed in reviews.


Principles and process

SIS is based on the consecutive introduction of different precursors into a polymer, taking advantage of the material's porosity on the molecular scale. This allows the precursors to diffuse into the material and react with specific functional groups located along the polymer backbone or pendant group. Through the selection and combination of the precursors, a rich variety of materials can be synthesized, each of which can endow unique properties to the material. The process of SIS involves various key steps, the first of which is
materials selection Material selection is a step in the process of designing any physical object. In the context of product design, the main goal of material selection is to minimize cost while meeting product performance goals. Systematic selection of the best materi ...
. A suitable substrate material, such as a polymer film, and precursors, typically molecules that can react with the substrate's functional groups, are used for the infiltration synthesis. The pairing of polymer chemistry and precursor species is vital for acquiring the desired fictionalization and modification. The substrate is placed in a reactor with an inert atmosphere (typically an
inert gas An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent u ...
or
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
). The first precursor vapor (e.g., trimethylaluminum, TMA) is introduced at a sufficiently high
vapor pressure Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indicat ...
and duration such that the precursor molecules diffuse into the substrate. Thus the precursor infiltrates the material and then reacts with the interior functional groups. After a suitable diffusion/reaction time, the reactor is purged with inert gas or evacuated to remove reaction byproducts and UN-reacted precursors. A second vapor-phase species, often a co-reactant, such as H2O, is introduced. Again, the precursor partial pressure and exposure time are selected to allow sufficient time and thermodynamic driving force for diffusion into the polymer and reaction with the functional groups left by the first precursor exposure. The second precursor is then purged or evacuated to complete the first SIS cycle. The second precursor may also create new functional groups for reaction with the first precursor for subsequent SIS cycles. Sequential infiltration steps can then be repeated using the same or different precursor species until the desired modifications are achieved. When the desired infiltrations are achieved, the modified material can undergo further post-treatment steps to enhance the modified layers' properties, including stability. Post-treatment may include heating, chemical treatment, or oxidation to remove the organic polymer. With SIS it is natural to apply to block co-polymer substrates. Block co-polymers such as
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It i ...
-block- poly(methyl methotrexate), PS-b-PMMA, can spontaneously undergo micro-phase separation to form a rich variety of periodic mesoscale patterns. If the SIS precursors are selected to react with just one of the BCP components but not with the second component, then the inorganic material will only nucleate and grow in that component. For instance, TMA will react with the PMMA side chains of PS-b-PMMA but not with the PS side chains. Consequently, SIS using TMA and H2O as precursor vapors to infiltrate a PS-b-PMMA micro-phase-separated substrate will form Al2O3 specifically in the PMMA-enriched micro-phase subdomains. Subsequent removal of the PS-b-PMMA by using oxygen plasma or by annealing in air will convert the combined organic and inorganic mesoscale pattern into a purely inorganic Al2O3 pattern that shares the mesoscale structure of the block copolymer but is more chemically and thermally robust.


Applications


Lithography

SIS is capable of enhancing etch resistance in lithographic photo-resist, such as those used in
photo-lithography Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer. The process begins with a photosensiti ...
, micro-fabrication, and nano-lithography. This method involves the sequential deposition of inorganic materials within a patterned resist's micro/nano-structures. By controlling the infiltration of these materials, SIS can engineer the chemical composition and density of the resist, thus enhancing its resistance to common etching processes. This allows for finer feature patterns and increased durability in micro-fabrication, which has advanced the capabilities of semiconductor manufacturing and nanotechnology applications. Another recent application for SIS in lithography is to enhance the
optical absorption In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). A ...
of the photo-resist in the extreme ultraviolet range to improve
EUV lithography Extreme ultraviolet lithography (EUVL, also known simply as EUV) is a technology used in the semiconductor industry for manufacturing integrated circuits (ICs). It is a type of photolithography that uses 13.5 nm extreme ultraviolet (EUV) light from ...
.


Surface coatings

SIS has applications in the field of surface coatings, particularly in the development of coatings with specific functional properties. With the sequential infiltration of different precursors into the material, SIS allows for the creation of coatings with enhanced properties and performance such as durability, corrosion resistance, eosinophilic,
Lipophilicity Lipophilicity (from Greek λίπος "fat" and φίλος "friendly") is the ability of a chemical compound to dissolve in fats, oils, lipids, and non-polar solvents such as hexane or toluene. Such compounds are called lipophilic (translated ...
, anti-reflection, and/or improved adhesion to substrates. Such an application of SIS can be used for protective coatings for metals, anti-fouling coatings for biomedical applications, and coatings for optical and electronic devices. In this application, the diffusion and reaction of the SIS precursors below the polymer surface facilitate a bulk-like transformation such that the effective thickness of the surface coating (e.g., several microns) is much larger than the film thickness that would result using the same number of
atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called wiktionary:precu ...
(ALD) cycles on a conventional, dense substrate (e.g., a few nanometers).


Sensors and actuators

SIS, with its precise control over material properties, can be used to develop sensors and actuators. The functional layers created through the selective infiltration of specific precursors can enhance the sensitivity, selectivity, and response of sensors, which have applications in gas sensing, chemical sensing, biosensing, and environmental monitoring. SIS is also sued to engineer actuators with tunable properties, as it allows for the creation of devices on the micro and nano scales.


Energy devices

SIS has also shown promise in energy devices, especially in improving the performance and stability of energy storage and conversion systems. Employing SIS and the correct precursors, the technique can modify the surfaces and interfaces of materials used in batteries, super-capacitors, and
fuel cells A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in req ...
, enhancing charge transport, electrochemical stability, and energy density. SIS is also being explored for its applications in
photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commerciall ...
, in which it can be used to engineer interfaces and increase light absorption.


Biomedicine

SIS is a tool for surface modifications to improve bio-compatibility, bio-activity, and controlled drug release, making it useful in some biomedical applications. Polymers and radioactive macro-molecules treated with SIS can obtain
coatings A coating is a covering that is applied to the surface of an object, or substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. powder coatings. Paints and ...
with developed
cell adhesion Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as Cell_junction, cell junc ...
and reduced bacterial adhesion, as well as provide a medium for the controlled release of therapeutics. Such properties are applicable in
biomedicine Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine)
, such as implantable
medical devices A medical device is any device intended to be used for medical purposes. Significant potential for hazards are inherent when using a device for medical purposes and thus medical devices must be proved safe and effective with reasonable assura ...
,
tissue engineering Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biolo ...
, and drug delivery systems.


Bio-materials

Modifying the mechanical properties of proteins is an early example of SIS application. For spider dragline silk, the toughness characteristic was significantly enhanced when metallic impurities, such as titanium or aluminum, infiltrated the fibers. This fiber doping using SIS techniques attempts to mimic the effect of metallic impurities on silk properties observed in nature.


Limitations

One of the main challenges of SIS is the need to perform the process in an inert environment. Creation of a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
and/or introduction of
inert gas An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent u ...
carries costs that may be prohibitive for applications. A second challenge lies in the inherent complexity of the diffusion-reaction process. The specifics of reactor configuration and process parameters significantly influence the final material properties, complicating process optimization, reproducibility, and
scalability Scalability is the property of a system to handle a growing amount of work. One definition for software systems specifies that this may be done by adding resources to the system. In an economic context, a scalable business model implies that ...
. While SIS is versatile and applicable to a broad range of materials, not all materials are compatible with this technique. The relatively slow diffusion rate of SIS precursor vapors through polymers can make the process time-intensive, particularly over
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenome ...
distances. For example, infiltrating
millimeter 330px, Different lengths as in respect of the electromagnetic spectrum, measured by the metre and its derived scales. The microwave is between 1 metre to 1 millimetre. The millimetre (American and British English spelling differences#-re, -er, i ...
-scale depths into a polymer may necessitate precursor exposure times of several hours. For comparison, ALD of thin films on dense surfaces that do not involve diffusion into the substrate would require exposure times of <1 s using the same precursors.


References

{{Reflist Thin film deposition