HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
is called separable if it contains a
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
, dense subset; that is, there exists a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
( x_n )_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
(though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces.


First examples

Any topological space that is itself finite or
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
is separable, for the whole space is a countable dense subset of itself. An important example of an uncountable separable space is the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
, in which the
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction (mathematics), fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for examp ...
form a countable dense subset. Similarly the set of all length-n vectors of rational numbers, \boldsymbol=(r_1,\ldots,r_n) \in \mathbb^n, is a countable dense subset of the set of all length-n vectors of real numbers, \mathbb^n; so for every n, n-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
is separable. A simple example of a space that is not separable is a
discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
of uncountable cardinality. Further examples are given below.


Separability versus second countability

Any second-countable space is separable: if \ is a countable base, choosing any x_n \in U_n from the non-empty U_n gives a countable dense subset. Conversely, a
metrizable space In topology and related areas of mathematics, a metrizable space is a topological space that is Homeomorphism, homeomorphic to a metric space. That is, a topological space (X, \tau) is said to be metrizable if there is a Metric (mathematics), metr ...
is separable if and only if it is second countable, which is the case if and only if it is Lindelöf. To further compare these two properties: * An arbitrary subspace of a second-countable space is second countable; subspaces of separable spaces need not be separable (see below). * Any continuous image of a separable space is separable ; even a quotient of a second-countable space need not be second countable. * A product of at most continuum many separable spaces is separable . A countable product of second-countable spaces is second countable, but an uncountable product of second-countable spaces need not even be first countable. We can construct an example of a separable topological space that is not second countable. Consider any uncountable set X, pick some x_0 \in X, and define the topology to be the collection of all sets that contain x_0 (or are empty). Then, the closure of is the whole space (X is the smallest closed set containing x_0), but every set of the form \ is open. Therefore, the space is separable but there cannot have a countable base.


Cardinality

The property of separability does not in and of itself give any limitations on the
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
of a topological space: any set endowed with the
trivial topology In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ...
is separable, as well as second countable, quasi-compact, and connected. The "trouble" with the trivial topology is its poor separation properties: its Kolmogorov quotient is the one-point space. A first-countable, separable Hausdorff space (in particular, a separable metric space) has at most the continuum cardinality \mathfrak. In such a space, closure is determined by limits of sequences and any convergent sequence has at most one limit, so there is a surjective map from the set of convergent sequences with values in the countable dense subset to the points of X. A separable Hausdorff space has cardinality at most 2^\mathfrak, where \mathfrak is the cardinality of the continuum. For this closure is characterized in terms of limits of filter bases: if Y\subseteq X and z\in X, then z\in\overline if and only if there exists a filter base \mathcal consisting of subsets of Y that converges to z. The cardinality of the set S(Y) of such filter bases is at most 2^. Moreover, in a Hausdorff space, there is at most one limit to every filter base. Therefore, there is a surjection S(Y) \rightarrow X when \overline=X. The same arguments establish a more general result: suppose that a Hausdorff topological space X contains a dense subset of cardinality \kappa. Then X has cardinality at most 2^ and cardinality at most 2^ if it is first countable. The product of at most continuum many separable spaces is a separable space . In particular the space \mathbb^ of all functions from the real line to itself, endowed with the product topology, is a separable Hausdorff space of cardinality 2^\mathfrak. More generally, if \kappa is any infinite cardinal, then a product of at most 2^\kappa spaces with dense subsets of size at most \kappa has itself a dense subset of size at most \kappa ( Hewitt–Marczewski–Pondiczery theorem).


Constructive mathematics

Separability is especially important in
numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ...
and constructive mathematics, since many theorems that can be proved for nonseparable spaces have constructive proofs only for separable spaces. Such constructive proofs can be turned into
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
s for use in numerical analysis, and they are the only sorts of proofs acceptable in constructive analysis. A famous example of a theorem of this sort is the
Hahn–Banach theorem In functional analysis, the Hahn–Banach theorem is a central result that allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space. The theorem also shows that there are sufficient ...
.


Further examples


Separable spaces

* Every compact
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
(or metrizable space) is separable. * Any topological space that is the union of a countable number of separable subspaces is separable. Together, these first two examples give a different proof that n-dimensional Euclidean space is separable. * The space C(K) of all continuous functions from a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
subset K\subseteq\mathbb to the real line \mathbb is separable. * The Lebesgue spaces L^\left(X,\mu\right), over a measure space \left\langle X,\mathcal,\mu\right\rangle whose σ-algebra is countably generated and whose measure is σ-finite, are separable for any 1\leq p<\infty. * The space C( ,1 of continuous real-valued functions on the unit interval ,1/math> with the metric of uniform convergence is a separable space, since it follows from the Weierstrass approximation theorem that the set \mathbb /math> of polynomials in one variable with rational coefficients is a countable dense subset of C( ,1. The
Banach–Mazur theorem In functional analysis, a field of mathematics, the Banach–Mazur theorem is a theorem roughly stating that most well-behaved normed spaces are Linear subspace, subspaces of the space of continuous function (topology), continuous Path (topology), ...
asserts that any separable
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
is isometrically isomorphic to a closed
linear subspace In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a li ...
of C( ,1. * A
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
is separable if and only if it has a countable
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite Dimension (linear algebra), dimension is a Basis (linear algebra), basis for V whose vectors are orthonormal, that is, they are all unit vec ...
. It follows that any separable, infinite-dimensional Hilbert space is isometric to the space \ell^2 of square-summable sequences. * An example of a separable space that is not second-countable is the Sorgenfrey line \mathbb, the set of real numbers equipped with the
lower limit topology In mathematics, the lower limit topology or right half-open interval topology is a topology defined on \mathbb, the set of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of in ...
. * A separable σ-algebra is a σ-algebra \mathcal that is a separable space when considered as a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
with metric \rho(A,B) = \mu(A \triangle B) for A,B \in \mathcal and a given finite measure \mu (and with \triangle being the
symmetric difference In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and ...
operator).


Non-separable spaces

* The first uncountable ordinal \omega_1, equipped with its natural order topology, is not separable. * The
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
\ell^\infty of all bounded real sequences, with the supremum norm, is not separable. The same holds for L^\infty. * The
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
of functions of bounded variation is not separable; note however that this space has very important applications in mathematics, physics and engineering.


Properties

* A subspace of a separable space need not be separable (see the Sorgenfrey plane and the Moore plane), but every ''open'' subspace of a separable space is separable . Also every subspace of a separable
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
is separable. * In fact, every topological space is a subspace of a separable space of the same
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
. A construction adding at most countably many points is given in ; if the space was a Hausdorff space then the space constructed that it embeds into is also a Hausdorff space. * The set of all real-valued continuous functions on a separable space has a cardinality equal to \mathfrak, the
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \ ...
. This follows since such functions are determined by their values on dense subsets. * From the above property, one can deduce the following: If ''X'' is a separable space having an uncountable closed discrete subspace, then ''X'' cannot be normal. This shows that the Sorgenfrey plane is not normal. *For a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
''X'', the following are equivalent:


Embedding separable metric spaces

* Every separable metric space is
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to a subset of the Hilbert cube. This is established in the proof of the Urysohn metrization theorem. * Every separable metric space is isometric to a subset of the (non-separable)
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
''l'' of all bounded real sequences with the supremum norm; this is known as the Fréchet embedding. * Every separable metric space is isometric to a subset of C( ,1, the separable Banach space of continuous functions ,1nbsp;→ R, with the supremum norm. This is due to Stefan Banach. * Every separable metric space is isometric to a subset of the Urysohn universal space. ''For nonseparable spaces'': * A
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
of
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
equal to an infinite cardinal is isometric to a subspace of , the space of real continuous functions on the product of copies of the unit interval.


References

* * * * * * {{DEFAULTSORT:Separable Space General topology Properties of topological spaces