HOME

TheInfoList



OR:

In mathematics, a semialgebraic set is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
''S'' of ''Rn'' for some
real closed field In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. ...
''R'' (for example ''R'' could be the
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
of
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s) defined by a finite sequence of
polynomial equations In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equati ...
(of the form P(x_1,...,x_n) = 0) and
inequalities Inequality may refer to: Economics * Attention inequality, unequal distribution of attention across users, groups of people, issues in etc. in attention economy * Economic inequality, difference in economic well-being between population groups * ...
(of the form Q(x_1,...,x_n) > 0), or any finite union of such sets. A semialgebraic function is a function with a semialgebraic
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
. Such sets and functions are mainly studied in
real algebraic geometry In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynom ...
which is the appropriate framework for algebraic geometry over the real numbers.


Properties

Similarly to algebraic subvarieties, finite unions and
intersections In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
of a semialgebraic set is again semialgebraic. Finally, and most importantly, the
Tarski–Seidenberg theorem In mathematics, the Tarski–Seidenberg theorem states that a set in (''n'' + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto ''n''-dimensional space, and the resulting set is still defin ...
says that they are also closed under the projection operation: in other words a semialgebraic set projected onto a linear subspace yields another such (as case of elimination of quantifiers). These properties together mean that semialgebraic sets form an o-minimal structure on ''R''. A semialgebraic set (or function) is said to be defined over a subring ''A'' of ''R'' if there is some description as in the definition, where the polynomials can be chosen to have coefficients in ''A''. On a
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
open subset In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are s ...
of the semialgebraic set ''S'', it is (locally) a
submanifold In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which ...
. One can define the dimension of ''S'' to be the largest dimension at points at which it is a submanifold. It is not hard to see that a semialgebraic set lies inside an algebraic subvariety of the same dimension.


See also

*
Łojasiewicz inequality In real algebraic geometry, the Łojasiewicz inequality, named after Stanisław Łojasiewicz, gives an upper bound for the distance of a point to the nearest zero of a given real analytic function. Specifically, let ƒ : ''U'' � ...
*
Existential theory of the reals In mathematical logic, computational complexity theory, and computer science, the existential theory of the reals is the set of all true sentences of the form \exists X_1 \cdots \exists X_n \, F(X_1,\dots, X_n), where the variables X_i are interpre ...
*
Subanalytic set In mathematics, particularly in the subfield of real analytic geometry, a subanalytic set is a set of points (for example in Euclidean space) defined in a way broader than for semianalytic sets (roughly speaking, those satisfying conditions requiri ...


References

*. *. *{{citation, first=L., last=van den Dries, title=Tame topology and ''o''-minimal structures, publisher=Cambridge University Press, year=1998, isbn=9780521598385, url=https://books.google.com/books?id=CLnElinpjOgC&q=semialgebraic.


External links


PlanetMath page
Real algebraic geometry