HOME

TheInfoList



OR:

In
ecology Ecology () is the natural science of the relationships among living organisms and their Natural environment, environment. Ecology considers organisms at the individual, population, community (ecology), community, ecosystem, and biosphere lev ...
, the term productivity refers to the rate of generation of biomass in an
ecosystem An ecosystem (or ecological system) is a system formed by Organism, organisms in interaction with their Biophysical environment, environment. The Biotic material, biotic and abiotic components are linked together through nutrient cycles and en ...
, usually expressed in units of
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
per volume (unit surface) per unit of time, such as grams per square metre per
day A day is the time rotation period, period of a full Earth's rotation, rotation of the Earth with respect to the Sun. On average, this is 24 hours (86,400 seconds). As a day passes at a given location it experiences morning, afternoon, evening, ...
(g m−2 d−1). The unit of mass can relate to dry matter or to the mass of generated
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
. The productivity of autotrophs, such as
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s, is called primary productivity, while the productivity of heterotrophs, such as
animal Animals are multicellular, eukaryotic organisms in the Biology, biological Kingdom (biology), kingdom Animalia (). With few exceptions, animals heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, ...
s, is called secondary productivity. The productivity of an ecosystem is influenced by a wide range of factors, including nutrient availability, temperature, and water availability. Understanding ecological productivity is vital because it provides insights into how ecosystems function and the extent to which they can support life.


Primary production

Primary production is the synthesis of organic material from inorganic molecules. Primary production in most ecosystems is dominated by the process of
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
, In which organisms synthesize organic molecules from
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
, H2O, and CO2. Aquatic primary productivity refers to the production of organic matter, such as phytoplankton, aquatic plants, and algae, in aquatic ecosystems, which include oceans, lakes, and rivers. Terrestrial primary productivity refers to the organic matter production that takes place in terrestrial ecosystems such as forests, grasslands, and wetlands. Primary production is divided into Net Primary Production (NPP) and Gross Primary Production (GPP). Gross primary production measures all carbon assimilated into organic molecules by primary producers. Net primary production measures the organic molecules by primary producers. Net primary production also measures the amount of carbon assimilated into organic molecules by primary producers, but does not include organic molecules that are then broken down again by these organism for biological processes such as cellular respiration. The formula used to calculate NPP is net primary production = gross primary production - respiration.


Primary producers


Photoautotrophs

Organisms that rely on light energy to fix carbon, and thus participate in primary production, are referred to as photoautotrophs. Photoautotrophs exists across the tree of life. Many bacterial taxa are known to be photoautotrophic such as
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
and some Pseudomonadota (formerly proteobacteria). Eukaryotic organisms gained the ability to participate in photosynthesis through the development of plastids derived from endosymbiotic relationships. Archaeplastida, which includes red algae,
green algae The green algae (: green alga) are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/ Streptophyta. The land plants ...
, and plants, have evolved
chloroplast A chloroplast () is a type of membrane-bound organelle, organelle known as a plastid that conducts photosynthesis mostly in plant cell, plant and algae, algal cells. Chloroplasts have a high concentration of chlorophyll pigments which captur ...
s originating from an ancient endosymbiotic relationship with an Alphaproteobacteria. The productivity of plants, while being photoautotrophs, is also dependent on factors such as salinity and abiotic stressors from the surrounding environment. The rest of the eukaryotic photoautotrophic organisms are within the SAR clade (Comprising Stramenopila, Alveolata, and Rhizaria). Organisms in the SAR clade that developed plastids did so through a secondary or a tertiary endosymbiotic relationships with green algae and/or red algae. The SAR clade includes many aquatic and marine primary producers such as Kelp,
Diatom A diatom (Neo-Latin ''diatoma'') is any member of a large group comprising several Genus, genera of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of Earth's B ...
s, and Dinoflagellates.


Lithoautotrophs

The other process of primary production is lithoautotrophy. Lithoautotrophs use reduced chemical compounds such as hydrogen gas, hydrogen sulfide,
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
, or ferrous ion to fix carbon and participate in primary production. Lithoautotrophic organisms are prokaryotic and are represented by members of both the
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
l and
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
l domains. Lithoautotrophy is the only form of primary production possible in ecosystems without light such as ground-water ecosystems, hydrothermal vent ecosystems, soil ecosystems, and cave ecosystems.


Secondary production

Secondary production is the generation of biomass of heterotrophic (consumer) organisms in a system. This is driven by the transfer of organic material between trophic levels, and represents the quantity of new tissue created through the use of assimilated food. Secondary production is sometimes defined to only include consumption of primary producers by herbivorous consumers (with tertiary production referring to carnivorous consumers), but is more commonly defined to include all biomass generation by heterotrophs. Organisms responsible for secondary production include animals,
protist A protist ( ) or protoctist is any eukaryotic organism that is not an animal, land plant, or fungus. Protists do not form a natural group, or clade, but are a paraphyletic grouping of all descendants of the last eukaryotic common ancest ...
s,
fungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
and many bacteria. Secondary production can be estimated through a number of different methods including increment summation, removal summation, the instantaneous growth method and the Allen curve method. The choice between these methods will depend on the assumptions of each and the ecosystem under study. For instance, whether cohorts should be distinguished, whether linear mortality can be assumed and whether
population growth Population growth is the increase in the number of people in a population or dispersed group. The World population, global population has grown from 1 billion in 1800 to 8.2 billion in 2025. Actual global human population growth amounts to aroun ...
is exponential. Net ecosystem production is defined as the difference between gross primary production (GPP) and ecosystem respiration. The formula to calculate net ecosystem production is NEP = GPP - respiration (by autotrophs) - respiration (by heterotrophs). The key difference between NPP and NEP is that NPP focuses primarily on autotrophic production, whereas NEP incorporates the contributions of other aspects of the ecosystem to the total carbon budget.


Productivity

Following is the list of ecosystems in order of decreasing productivity.


Species diversity and productivity relationship

The connection between plant productivity and biodiversity is a significant topic in ecology, although it has been controversial for decades. Both productivity and species diversity are constricted by other variables such as climate, ecosystem type, and land use intensity. According to some research on the correlation between plant diversity and ecosystem functioning is that productivity increases as species diversity increases. One reasoning for this is that the likelihood of discovering a highly productive species increases as the number of species initially present in an ecosystem increases. Other researchers believe that the relationship between species diversity and productivity is unimodal within an ecosystem. A 1999 study on grassland ecosystems in Europe, for example, found that increasing species diversity initially increased productivity but gradually leveled off at intermediate levels of diversity. More recently, a meta-analysis of 44 studies from various ecosystem types observed that the interaction between diversity and production was unimodal in all but one study.


Human interactions

Anthropogenic activities (human activities) have impacted the productivity and biomass of several ecosystems. Examples of these activities include habitat modification, freshwater consumption, an increase in nutrients due to fertilizers, and many others. Increased nutrients can stimulate an algal bloom in waterbodies, increasing primary production but making the ecosystem less stable. This would raise secondary production and have a trophic cascade effect across the food chain, ultimately increasing overall ecosystem productivity. In lakes, these human impacts can "mask" the effects of
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
. Algal biomass is causally related to climate in some lakes, with temporary or long-term shifts in productivity ( regime shifts).


See also

* Biomass (ecology) * Community ecology * Food web * Agricultural productivity


References

{{Authority control Aquatic ecology Biological oceanography Chemical oceanography