HOME

TheInfoList



OR:

Myosatellite cells, also known as satellite cells, muscle stem cells or MuSCs, are small
multipotent Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum ...
cells with very little
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
found in mature
muscle Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to muscle contra ...
. Satellite cells are precursors to
skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
cells, able to give rise to satellite cells or differentiated skeletal muscle cells. They have the potential to provide additional myonuclei to their parent muscle fiber, or return to a quiescent state. More specifically, upon activation, satellite cells can re-enter the cell cycle to proliferate and differentiate into myoblasts. Myosatellite cells are located between the
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
and the
sarcolemma The sarcolemma (''sarco'' (from ''sarx'') from Greek; flesh, and ''lemma'' from Greek; sheath), also called the myolemma, is the cell membrane surrounding a skeletal muscle fibre or a cardiomyocyte. It consists of a lipid bilayer and a thin ...
of muscle fibers, and can lie in grooves either parallel or transversely to the longitudinal axis of the fibre. Their distribution across the fibre can vary significantly. Non-proliferative, quiescent myosatellite cells, which adjoin resting skeletal muscles, can be identified by their distinct location between sarcolemma and basal lamina, a high nuclear-to-cytoplasmic volume ratio, few organelles (e.g. ribosomes, endoplasmic reticulum, mitochondria, golgi complexes), small nuclear size, and a large quantity of nuclear heterochromatin relative to myonuclei. On the other hand, activated satellite cells have an increased number of
caveolae In biology, caveolae (Latin for "little caves"; singular, caveola), which are a special type of lipid raft, are small (50–100 nanometer) invaginations of the plasma membrane in the cells of many vertebrates. They are the most abundant surface fe ...
, cytoplasmic organelles, and decreased levels of heterochromatin. Satellite cells are able to differentiate and fuse to augment existing
muscle fibers Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
and to form new fibers. These cells represent the oldest known adult
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell ...
niche, and are involved in the normal growth of muscle, as well as regeneration following injury or
disease A disease is a particular abnormal condition that adversely affects the structure or function (biology), function of all or part of an organism and is not immediately due to any external injury. Diseases are often known to be medical condi ...
. In undamaged muscle, the majority of satellite cells are ''quiescent''; they neither differentiate nor undergo cell division. In response to mechanical strain, satellite cells become ''activated''. Activated satellite cells initially proliferate as skeletal myoblasts before undergoing myogenic differentiation.


Structure


Genetic markers

Satellite cells express a number of distinctive
genetic markers A genetic marker is a gene or DNA sequence with a known location on a chromosome that can be used to identify individuals or species. It can be described as a variation (which may arise due to mutation or alteration in the genomic loci) that can be ...
. Current thinking is that most satellite cells express
PAX7 Paired box protein Pax-7 is a protein that in humans is encoded by the ''PAX7'' gene. Function Pax-7 plays a role in neural crest development and gastrulation, and it is an important factor in the expression of neural crest markers such as Slu ...
and
PAX3 The PAX3 (paired box gene 3) gene encodes a member of the paired box or Pax genes, PAX family of transcription factors. The PAX family consists of nine human (PAX1-PAX9) and nine mouse (Pax1-Pax9) members arranged into four subfamilies. Human PAX ...
. Satellite cells in the head musculature have a unique developmental program, and are Pax3-negative. Moreover, both quiescent and activated human satellite cells can be identified by the membrane-bound neural cell adhesion molecule (N-CAM/CD56/Leu-19), a cell-surface glycoprotein. Myocyte nuclear factor (MNF), and c-met proto-oncogene (receptor for hepatocyte growth factor ( HGF)) are less commonly used markers.
CD34 CD34 is a transmembrane phosphoglycoprotein protein encoded by the CD34 gene in humans, mice, rats and other species. CD34 derives its name from the cluster of differentiation protocol that identifies cell surface antigens. CD34 was first desc ...
and Myf5 markers specifically define the majority of quiescent satellite cells. Activated satellite cells prove problematic to identify, especially as their markers change with the degree of activation; for example, greater activation results in the progressive loss of Pax7 expression as they enter the proliferative stage. However, Pax7 is expressed prominently after satellite cell differentiation. Greater activation also results in increased expression of myogenic basic helix-loop-helix transcription factors
MyoD MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins kn ...
,
myogenin Myogenin, is a transcriptional activator encoded by the ''MYOG'' gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogeni ...
, and MRF4 – all responsible for the induction of myocyte-specific genes. HGF testing is also used to identify active satellite cells. Activated satellite cells also begin expressing muscle-specific filament proteins such as
desmin Desmin is a protein that in humans is encoded by the ''DES'' gene. Desmin is a muscle-specific, type III intermediate filament that integrates the sarcolemma, Z disk, and nuclear membrane in sarcomeres and regulates sarcomere architecture. ...
as they differentiate. The field of satellite cell biology suffers from the same technical difficulties as other stem cell fields. Studies rely almost exclusively on
Flow cytometry Flow cytometry (FC) is a technique used to detect and measure the physical and chemical characteristics of a population of cells or particles. In this process, a sample containing cells or particles is suspended in a fluid and injected into the ...
and fluorescence activated cell sorting (FACS) analysis, which gives no information about cell lineage or behaviour. As such, the satellite cell niche is relatively ill-defined and it is likely that it consists of multiple sub-populations.


Function


Muscle repair

When muscle cells undergo injury, quiescent satellite cells are released from beneath the
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
. They become activated and re-enter the cell cycle. These dividing cells are known as the "transit amplifying pool" before undergoing myogenic differentiation to form new (post-mitotic) myotubes. There is also evidence suggesting that these cells are capable of fusing with existing myofibers to facilitate growth and repair. The process of muscle regeneration involves considerable remodeling of extracellular matrix and, where extensive damage occurs, is incomplete. Fibroblasts within the muscle deposit scar tissue, which can impair muscle function, and is a significant part of the pathology of
muscular dystrophies Muscular dystrophies (MD) are a genetically and clinically heterogeneous group of rare neuromuscular diseases that cause progressive weakness and breakdown of skeletal muscles over time. The disorders differ as to which muscles are primarily aff ...
. Satellite cells proliferate following muscle trauma and form new myofibers through a process similar to fetal muscle development. After several cell divisions, the satellite cells begin to fuse with the damaged myotubes and undergo further differentiations and maturation, with peripheral nuclei as in hallmark. One of the first roles described for IGF-1 was its involvement in the proliferation and differentiation of satellite cells. In addition, IGF-1 expression in skeletal muscle extends the capacity to activate satellite cell proliferation (Charkravarthy, et al., 2000), increasing and prolonging the beneficial effects to the aging muscle.


Effects of exercise

Satellite cell activation is measured by the extent of proliferation and differentiation. Typically, satellite cell content is expressed per muscle fiber or as a percentage of total nuclear content, the sum of satellite cell nuclei and myonuclei. While the adaptive response to exercise largely varies on an individual basis on factors such as genetics, age, diet, acclimatization to exercise, and exercise volume, human studies have demonstrated general trends. It is suggested that exercise triggers the release of signaling molecules including inflammatory substances, cytokines and growth factors from surrounding connective tissues and active skeletal muscles. Notably, HGF, a cytokine, is transferred from the extracellular matrix into muscles through the nitric-oxide dependent pathway. It is thought that HGF activates satellite cells, while insulin-like growth factor-I (
IGF-1 Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults. In the 1950s IGF-1 was called " sulfa ...
) and
fibroblast growth factor Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by the macrophages. They are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in ...
(FGF) enhance satellite cell proliferation rate following activation. Studies have demonstrated that intense exercise generally increases IGF-1 production, though individual responses vary significantly. More specifically, IGF-1 exists in two isoforms: mechano growth factor (MGF) and IGF-IEa. While the former induces activation and proliferation, the latter causes differentiation of proliferating satellite cells. Human studies have shown that both high resistance training and endurance training have yielded an increased number of satellite cells. These results suggest that a light, endurance training regimen may be useful to counteract the age-correlated satellite cell decrease. In high-resistance training, activation and proliferation of satellite cells are evidenced by increased cyclin D1 mRNA, and p21 mRNA levels. This is consistent with the fact that cyclin D1 and p21 upregulation correlates to division and differentiation of cells. Satellite cell activation has also been demonstrated on an ultrastructural level following exercise.
Aerobic exercise Aerobic exercise, also known as cardio, is physical exercise of low to high intensity that depends primarily on the aerobic energy-generating process. "Aerobic" is defined as "relating to, involving, or requiring oxygen", and refers to the use of ...
has been shown to significantly increase granular
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
, free ribosomes, and mitochondria of the stimulated muscle groups. Additionally, satellite cells have been shown to fuse with muscle fibers, developing new muscle fibers. Other ultrastructural evidence for activated satellite cells include increased concentration of Golgi apparatus and pinocytotic vesicles.


Satellite cell activation and muscle regeneration

Satellite cells have a crucial role in muscle regeneration due to their ability to proliferate, differentiate, and self-renew. Prior to a severe injury to the muscle, satellite cells are in a dormant state. Slight proliferation can occur in times of light injuries but major injuries require greater numbers of satellite cells to activate. The activation of satellite cells from their dormant state is controlled through signals from the muscle niche. This signaling induces an inflammatory response in the muscle tissue. The behavior of satellite cells is a highly regulated process to accommodate the balance between dormant and active states. In times of injury, satellite cells in myofibers receive signals to proliferate from proteins in the crushed skeletal muscle. Myofibers are fundamental elements in muscle made up of actin and myosin myofibrils. The proteins responsible for signaling the activation of satellite cells are called mitogens. A mitogen is a small protein that induces a cell to enter the cell cycle. When the cells receive signals from the neurons, it causes the myofibers to depolarize and release calcium from the sarcoplasmic reticulum. The release of calcium induces the actin and myosin filaments to move and contract the muscle. Studies found that transplanted satellite cells onto myofibers supported multiple regenerations of new muscle tissue. These findings support the hypothesis that satellite cells are the stem cells in muscles. Dependent on their relative position to daughter cells on myofibers, satellite cells undergo asymmetric and symmetric division. The niche and location determines the behavior of satellite cells in their proliferation and differentiation. In general, mammalian skeletal muscle is relatively stable with little myonuclei turnover. Minor injuries from daily activities can be repaired without inflammation or cell death. Major injuries contribute to myofiber necrosis, inflammation, and cause satellite cells to activate and proliferate. The process of myofiber necrosis to myofiber formation results in muscle regeneration. Muscle regeneration occurs in three overlapping stages. The inflammatory response, activation and differentiation of satellite cells, and maturation of the new myofibers are essential for muscle regeneration. This process begins with the death of damaged muscle fibers where dissolution of myofiber sarcolemma leads to an increase in myofiber permeability. The disruption in myofiber integrity is seen in increased plasma levels in muscle proteins. The death of myofibers drives a calcium influx from the sarcoplasmic reticulum to induce tissue degradation. An inflammatory response follows the necrosis of myofibers. During times of muscle growth and regeneration, satellite cells can travel over between myofibers and muscle and over connective tissue barriers. Signals from the damaged environment induce these behavioral changes in satellite cells.


Research

Upon minimal stimulation, satellite cells ''in vitro'' or ''in vivo'' will undergo a myogenic differentiation program. Unfortunately, it seems that transplanted satellite cells have a limited capacity for migration, and are only able to regenerate muscle in the region of the delivery site. As such, systemic treatments or even the treatment of an entire muscle in this way is not possible. However, other cells in the body such as
pericytes Pericytes (formerly called Rouget cells) are multi-functional mural cells of the microcirculation that wrap around the endothelial cells that line the capillaries throughout the body. Pericytes are embedded in the basement membrane of blood capil ...
and
hematopoietic stem cells Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the ...
have all been shown to be able to contribute to muscle repair in a similar manner to the endogenous satellite cell. The advantage of using these cell types for therapy in muscle diseases is that they can be systemically delivered, autonomously migrating to the site of injury. Particularly successful recently has been the delivery of mesoangioblast cells into the Golden Retriever dog model of
Duchenne muscular dystrophy Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy predominantly affecting boys. The onset of muscle weakness typically begins around age four, with rapid progression. Initially, muscle loss occurs in the thighs and pe ...
, which effectively cured the disease. However, the sample size used was relatively small and the study has since been criticized for a lack of appropriate controls for the use of immunosuppressive drugs. Recently, it has been reported that Pax7 expressing cells contribute to dermal wound repair by adopting a fibrotic phenotype through a Wnt/β-catenin mediated process.


Regulation

Little is known of the regulation of satellite cells. Whilst together
PAX3 The PAX3 (paired box gene 3) gene encodes a member of the paired box or Pax genes, PAX family of transcription factors. The PAX family consists of nine human (PAX1-PAX9) and nine mouse (Pax1-Pax9) members arranged into four subfamilies. Human PAX ...
and
PAX7 Paired box protein Pax-7 is a protein that in humans is encoded by the ''PAX7'' gene. Function Pax-7 plays a role in neural crest development and gastrulation, and it is an important factor in the expression of neural crest markers such as Slu ...
currently form the definitive satellite markers, Pax genes are notoriously poor transcriptional activators. The dynamics of activation and quiesence and the induction of the myogenic program through the ''myogenic regulatory factors'', Myf5,
MyoD MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins kn ...
,
myogenin Myogenin, is a transcriptional activator encoded by the ''MYOG'' gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogeni ...
, and MRF4 remains to be determined. There is some research indicating that satellite cells are negatively regulated by a protein called myostatin. Increased levels of myostatin up-regulate a
cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases involved in the regulation of the cell cycle and its progression, ensuring the integrity and functionality of cellular machinery. These regulatory enzym ...
inhibitor called p21 and thereby inhibit the differentiation of satellite cells.


Myosatellite cells and cultured meat

Myosatellite cells contribute the most to muscle regeneration and repair. This makes them a prime target for the meat culturing field. These satellite cells are the main source of most muscle cell formation postnatally, with embryonic myoblasts being responsible for prenatal muscle generation. A single satellite cell can proliferate and become a larger amount of muscle cells. With the understanding that myosatellite cells are the progenitor of most skeletal muscle cells, it was theorized that if these cells could be grown in a lab and placed on scaffolds to make fibers, the muscle cells could then be used for food production. This theory has been proven true with many companies sprouting around the globe in the field of cultured meat including Mosa Meat in the Netherlands, and Upside Foods in the USA. An overview of the culturing process first involves the selection of a cell source. This initial stage is where the selection of a meat type happens, for example if the desired product is beef then cells are taken from a cow. The next part involves isolating and sorting out the myosatellite cells from whatever the selected cell source was. After being separated into the cellular components, the myosatellite cells need to be proliferated through the use of a
bioreactor A bioreactor is any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical reaction, chemical process is carried out which involves organisms or biochemistry, biochem ...
, a device used to grow microorganisms or cells in a media that can be easily controlled. Whatever media chosen will simulate the cells being in prime condition to proliferate within an organism. After proliferation the cells are shaped using a scaffold. These scaffolds can be an organic structure like decellularized plant or animal tissues, inorganic such as
polyacrylamide Polyacrylamide (abbreviated as PAM or pAAM) is a polymer with the formula (-CH2CHCONH2-). It has a linear-chain structure. PAM is highly water-absorbent, forming a soft gel when hydrated. In 2008, an estimated 750,000,000 kg were produced, ...
, or a mix of both. Once the cells have attached themselves to the scaffold and fully matured, they have become a raw meat product. The final step will include any necessary food processes needed for the desired final product.


See also

*
List of human cell types derived from the germ layers This is a list of Cell (biology), cells in humans derived from the three embryonic germ layers – ectoderm, mesoderm, and endoderm. Cells derived from ectoderm Surface ectoderm Skin * Trichocyte (human), Trichocyte * Keratinocyte Anterior pi ...
*
List of distinct cell types in the adult human body The list of human cell types provides an enumeration and description of the various specialized cells found within the human body, highlighting their distinct functions, characteristics, and contributions to overall physiological processes. Cell ...


References


External links


Image at neuro.wustl.edu



NIF Search - Satellite Cell
via the
Neuroscience Information Framework The Neuroscience Information Framework is a repository of global neuroscience web resources, including experimental, clinical, and translational neuroscience databases, knowledge bases, atlases, and genetic/ genomic resources and provides many aut ...
{{Authority control Myoblasts