In
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, a salt or ionic compound is a
chemical compound
A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
consisting of an assembly of positively charged
ions
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
(
cations) and negatively charged ions (
anions
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
), which results in a compound with no net
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
(electrically neutral). The constituent ions are held together by
electrostatic forces termed
ionic bonds
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compound ...
.
The component ions in a salt can be either
inorganic
An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''.
Inor ...
, such as
chloride
The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
(Cl
−), or
organic, such as
acetate
An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
(). Each ion can be either
monatomic
In physics and chemistry, "monatomic" is a combination of the words "mono" and "atomic", and means "single atom". It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions ...
, such as
sodium
Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
(Na
+) and chloride (Cl
−) in
sodium chloride
Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
, or
polyatomic, such as
ammonium
Ammonium is a modified form of ammonia that has an extra hydrogen atom. It is a positively charged (cationic) polyatomic ion, molecular ion with the chemical formula or . It is formed by the protonation, addition of a proton (a hydrogen nucleu ...
() and
carbonate
A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
() ions in
ammonium carbonate. Salts containing basic ions
hydroxide
Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It ...
(OH
−) or
oxide
An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
(O
2−) are classified as
bases, such as
sodium hydroxide
Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula . It is a white solid ionic compound consisting of sodium cations and hydroxide anions .
Sodium hydroxide is a highly corrosive base (chemistry), ...
and
potassium oxide
Potassium oxide ( K O) is an ionic compound of potassium and oxygen. It is a base. This pale yellow solid is the simplest oxide of potassium. It is a highly reactive compound that is rarely encountered. Some industrial materials, such as fertil ...
.
Individual ions within a salt usually have multiple near neighbours, so they are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Salts usually form
crystalline structure
In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat ...
s when solid.
Salts composed of small ions typically have high
melting
Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
and
boiling point
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
The boiling point of a liquid varies depending upon the surrounding envi ...
s, and are
hard and
brittle
A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. ...
. As solids they are almost always
electrically insulating, but when
melted or
dissolved they become highly
conductive
In physics and electrical engineering, a conductor is an object or type of material that allows the flow of Electric charge, charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow ...
, because the ions become mobile. Some salts have large cations, large anions, or both. In terms of their properties, such species often are more similar to organic compounds.
History of discovery
In 1913 the structure of
sodium chloride
Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
was determined by
William Henry Bragg and his son
William Lawrence Bragg
Sir William Lawrence Bragg (31 March 1890 – 1 July 1971) was an Australian-born British physicist who shared the 1915 Nobel Prize in Physics with his father William Henry Bragg "for their services in the analysis of crystal structure by ...
.
[ This revealed that there were six equidistant nearest-neighbours for each atom, demonstrating that the constituents were not arranged in molecules or finite aggregates, but instead as a network with long-range ]crystalline
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macrosc ...
order.[ Many other ]inorganic compound
An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemistry''.
Inorgan ...
s were also found to have similar structural features.[ These compounds were soon described as being constituted of ions rather than neutral ]atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, but proof of this hypothesis was not found until the mid-1920s, when X-ray reflection experiments (which detect the density of electrons), were performed.
Principal contributors to the development of a theoretical treatment of ionic crystal structures were Max Born
Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
, Fritz Haber
Fritz Jakob Haber (; 9 December 1868 – 29 January 1934) was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber process, a method used in industry to synthesize ammonia from nitrogen gas and hydrog ...
, Alfred Landé, Erwin Madelung, Paul Peter Ewald, and Kazimierz Fajans. Born predicted crystal energies based on the assumption of ionic constituents, which showed good correspondence to thermochemical measurements, further supporting the assumption.[
]
Formation
Many metals such as the alkali metal
The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
s react directly with the electronegative halogen
The halogens () are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would ...
s gases to form salts.
Salts form upon evaporation of their solutions. Once the solution is supersaturated
In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a ...
and the solid compound nucleates. This process occurs widely in nature and is the means of formation of the evaporite
An evaporite () is a water- soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as oce ...
minerals.
Insoluble salts can be precipitated by mixing two solutions, one with the cation and one with the anion in it. Because all solutions are electrically neutral, the two solutions mixed must also contain counterions of the opposite charges. To ensure that these do not contaminate the precipitated salt, it is important to ensure they do not also precipitate. If the two solutions have hydrogen ions and hydroxide ions as the counterions, they will react with one another in what is called an acid–base reaction
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms an ...
or a neutralization reaction to form water. Alternately the counterions can be chosen to ensure that even when combined into a single solution they will remain soluble as spectator ions.
If the solvent is water in either the evaporation or precipitation method of formation, in many cases the ionic crystal formed also includes water of crystallization
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is ...
, so the product is known as a hydrate
In chemistry, a hydrate is a substance that contains water or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understo ...
, and can have very different chemical properties compared to the anhydrous material.
Molten salts will solidify on cooling to below their freezing point
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
. This is sometimes used for the solid-state synthesis of complex salts from solid reactants, which are first melted together. In other cases, the solid reactants do not need to be melted, but instead can react through a solid-state reaction route. In this method, the reactants are repeatedly finely ground into a paste and then heated to a temperature where the ions in neighboring reactants can diffuse together during the time the reactant mixture remains in the oven. Other synthetic routes use a solid precursor with the correct stoichiometric
Stoichiometry () is the relationships between the masses of reactants and products before, during, and following chemical reactions.
Stoichiometry is based on the law of conservation of mass; the total mass of reactants must equal the total m ...
ratio of non-volatile ions, which is heated to drive off other species.
In some reactions between highly reactive metals (usually from Group 1 Group 1 may refer to:
* Alkali metal, a chemical element classification for Alkali metal
* Group 1 (motorsport), a regulation set of the FIA for series-production touring cars used in motorsport.
* Group One Thoroughbred horse races, the leading e ...
or Group 2 The term Group 2 may refer to:
* Alkaline earth metal
The alkaline earth metals are six chemical elements in group (periodic table), group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (B ...
) and highly electronegative halogen gases, or water, the atoms can be ionized by electron transfer
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions.
Electrochemical processes are ET reactio ...
, a process thermodynamically understood using the Born–Haber cycle.
Salts are formed by salt-forming reactions
* A base and an acid
An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
, e.g., NH3 + HCl → NH4Cl
* A metal
A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
and an acid
An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
, e.g., Mg + H2SO4 → MgSO4 + H2
* A metal and a non-metal, e.g., Ca + Cl2 → CaCl2
* A base and an acid anhydride
An acid anhydride is a type of chemical compound derived by the removal of water molecules from an acid.
In organic chemistry, organic acid anhydrides contain the functional group . Organic acid anhydrides often form when one equivalent of wa ...
, e.g., 2 NaOH + Cl2O → 2 NaClO + H2O
* An acid
An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
and a base anhydride
A base anhydride is an oxide of a chemical element from group 1 or 2 (the alkali metals and alkaline earth metals, respectively). They are obtained by removing water from the corresponding hydroxide base. If water is added to a base anhydride, a ...
, e.g., 2 HNO3 + Na2O → 2 NaNO3 + H2O
* In the salt metathesis reaction where two different salts are mixed in water, their ions recombine, and the new salt is insoluble and precipitates. For example:
*: Pb(NO3)2 + Na2SO4 → PbSO4↓ + 2 NaNO3
Bonding
Ions in salts are primarily held together by the electrostatic forces between the charge distribution of these bodies, and in particular, the ionic bond resulting from the long-ranged Coulomb
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI).
It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second, with the elementary charge ''e'' as a defining c ...
attraction between the net negative charge of the anions and net positive charge of the cations. There is also a small additional attractive force from van der Waals interactions which contributes only around 1–2% of the cohesive energy for small ions. When a pair of ions comes close enough for their outer electron shell
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (o ...
s (most simple ions have closed shells) to overlap, a short-ranged repulsive force occurs, due to the Pauli exclusion principle. The balance between these forces leads to a potential energy well with minimum energy when the nuclei are separated by a specific equilibrium distance.
If the electronic structure
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
of the two interacting bodies is affected by the presence of one another, covalent interactions (non-ionic) also contribute to the overall energy of the compound formed. Salts are rarely purely ionic, i.e. held together only by electrostatic forces. The bonds between even the most electronegative/ electropositive pairs such as those in caesium fluoride exhibit a small degree of covalency. Conversely, covalent bonds between unlike atoms often exhibit some charge separation and can be considered to have a partial ionic character. The circumstances under which a compound will have ionic or covalent character can typically be understood using Fajans' rules
In inorganic chemistry, Fajans' rules, formulated by Kazimierz Fajans in 1923, are used to predict whether a chemical bond will be covalent bond, covalent or ionic bond, ionic, and depend on the charge on the cation and the relative sizes of the ca ...
, which use only charges and the sizes of each ion. According to these rules, compounds with the most ionic character will have large positive ions with a low charge, bonded to a small negative ion with a high charge. More generally HSAB theory can be applied, whereby the compounds with the most ionic character are those consisting of hard acids and hard bases: small, highly charged ions with a high difference in electronegativities between the anion and cation. This difference in electronegativities means that the charge separation, and resulting dipole moment, is maintained even when the ions are in contact (the excess electrons on the anions are not transferred or polarized to neutralize the cations).
Although chemists classify idealized bond types as being ionic or covalent, the existence of additional types such as hydrogen bonds
In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, covalently bonded to a mo ...
and metallic bonds, for example, has led some philosophers of science to suggest that alternative approaches to understanding bonding are required. This could be by applying quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
to calculate binding energies.
Structure
The lattice energy is the summation of the interaction of all sites with all other sites. For unpolarizable spherical ions, only the charges and distances are required to determine the electrostatic interaction energy. For any particular ideal crystal structure, all distances are geometrically related to the smallest internuclear distance. So for each possible crystal structure, the total electrostatic energy can be related to the electrostatic energy of unit charges at the nearest neighboring distance by a multiplicative constant called the Madelung constant that can be efficiently computed using an Ewald sum. When a reasonable form is assumed for the additional repulsive energy, the total lattice energy can be modelled using the Born–Landé equation, the Born–Mayer equation, or in the absence of structural information, the Kapustinskii equation.
Using an even simpler approximation of the ions as impenetrable hard spheres, the arrangement of anions in these systems are often related to Close-packing of equal spheres, close-packed arrangements of spheres, with the cations occupying tetrahedral or octahedral interstitial site, interstices. Depending on the stoichiometry of the salt, and the Coordination sphere, coordination (principally determined by the Cation-anion radius ratio, radius ratio) of cations and anions, a variety of structures are commonly observed, and theoretically rationalized by Pauling's rules.
In some cases, the anions take on a simple cubic packing and the resulting common structures observed are:
Some ionic liquids, particularly with mixtures of anions or cations, can be cooled rapidly enough that there is not enough time for crystal nucleation to occur, so an ionic glass is formed (with no long-range order).
Defects
Within any crystal, there will usually be some defects. To maintain electroneutrality of the crystals, defects that involve loss of a cation will be associated with loss of an anion, i.e. these defects come in pairs. Frenkel defects consist of a cation vacancy paired with a cation interstitial and can be generated anywhere in the bulk of the crystal, occurring most commonly in compounds with a low coordination number and cations that are much smaller than the anions.[ Schottky defects consist of one vacancy of each type, and are generated at the surfaces of a crystal,] occurring most commonly in compounds with a high coordination number and when the anions and cations are of similar size. If the cations have multiple possible oxidation states, then it is possible for cation vacancies to compensate for electron deficiencies on cation sites with higher oxidation numbers, resulting in a non-stoichiometric compound. Another non-stoichiometric possibility is the formation of an F-center, a free electron occupying an anion vacancy. When the compound has three or more ionic components, even more defect types are possible. All of these point defects can be generated via thermal vibrations and have an Thermodynamic equilibrium, equilibrium concentration. Because they are energetically costly but Entropy, entropically beneficial, they occur in greater concentration at higher temperatures. Once generated, these pairs of defects can diffuse mostly independently of one another, by hopping between lattice sites. This defect mobility is the source of most transport phenomena within an ionic crystal, including diffusion and solid state ionic conductivity. When vacancies collide with interstitials (Frenkel), they can recombine and annihilate one another. Similarly, vacancies are removed when they reach the surface of the crystal (Schottky). Defects in the crystal structure generally expand the lattice parameters, reducing the overall density of the crystal. Defects also result in ions in distinctly different local environments, which causes them to experience a different Crystal field theory, crystal-field symmetry, especially in the case of different cations exchanging lattice sites. This results in a different Crystal-field splitting parameter, splitting of D-Orbitals, d-electron orbitals, so that the optical absorption (and hence colour) can change with defect concentration.
Properties
Acidity/basicity
Ionic compounds containing Hydrogen ion, hydrogen ions (H+) are classified as Acid, acids, and those containing electropositivity, electropositive cations and basic anions ions hydroxide
Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It ...
(OH−) or oxide
An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
(O2−) are classified as bases. Other ionic compounds are known as salts and can be formed by Acid–base reaction#Arrhenius theory, acid–base reactions. Salts that produce hydroxide
Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It ...
ions
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
when dissolved in water are called alkali salts, and salts that produce hydrogen ions
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
when dissolved in water are called acid salts, e.g. sodium hydrogen selenite (). If the compound is the result of a reaction between a strong acid and a weak base, the result is an acid salt. If it is the result of a reaction between a strong base and a weak acid, the result is a base salt. If it is the result of a reaction between a strong acid and a strong base, the result is a neutral salt. Weak acids reacted with weak bases can produce ionic compounds with both the conjugate base ion and conjugate acid ion, such as ammonium acetate.
Some ions are classed as Amphoterism, amphoteric, being able to react with either an acid or a base. This is also true of some compounds with ionic character, typically oxides or hydroxides of less-electropositive metals (so the compound also has significant covalent character), such as zinc oxide, aluminium hydroxide, aluminium oxide and lead(II) oxide.
Solubility
When simple salts dissolution (chemistry), dissolve, they dissociation (chemistry), dissociate into individual ions, which are solvation, solvated and dispersed throughout the resulting solution. Salts do not exist in solution. In contrast, molecular compounds, which includes most organic compounds, remain intact in solution.
The solubility of salts is highest in polar solvents (such as water) or ionic liquids, but tends to be low in nonpolar solvents (such as petrol/gasoline). This contrast is principally because the resulting Intermolecular force#Ion–dipole and ion–induced dipole forces, ion–dipole interactions are significantly stronger than ion-induced dipole interactions, so the enthalpy change of solution, heat of solution is higher. When the oppositely charged ions in the solid ionic lattice are surrounded by the opposite pole of a polar molecule, the solid ions are pulled out of the lattice and into the liquid. If the solvation energy exceeds the lattice energy, the negative net enthalpy change of solution provides a thermodynamic drive to remove ions from their positions in the crystal and dissolve in the liquid. In addition, the Entropy of mixing, entropy change of solution is usually positive for most solid solutes like salts, which means that their solubility increases when the temperature increases. There are some unusual salts such as cerium(III) sulfate, where this entropy change is negative, due to extra order induced in the water upon solution, and the solubility decreases with temperature.
The lattice energy, the cohesive forces between these ions within a solid, determines the solubility. The solubility is dependent on how well each ion interacts with the solvent, so certain patterns become apparent. For example, salts of sodium
Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
, potassium and ammonium are usually soluble in water. Notable exceptions include ammonium hexachloroplatinate and potassium cobaltinitrite. Most nitrates and many sulfates are water-soluble. Exceptions include barium sulfate, calcium sulfate (sparingly soluble), and lead(II) sulfate, where the 2+/2− pairing leads to high lattice energies. For similar reasons, most metal carbonate
A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
s are not soluble in water. Some soluble carbonate salts are: sodium carbonate, potassium carbonate and ammonium carbonate.
Strength
Strong salts or strong electrolyte salts are chemical salts composed of Strong electrolyte, strong electrolytes. These salts dissociate completely or almost completely in water. They are generally odorless and Volatility (chemistry), nonvolatile.
Strong salts start with Na__, K__, NH4__, or they end with __NO3, __ClO4, or __CH3COO. Most group 1 and 2 metals form strong salts. Strong salts are especially useful when creating conductive compounds as their constituent ions allow for greater conductivity.
Weak salts or weak electrolyte salts are composed of weak electrolytes. These salts do not dissociate well in water. They are generally more volatility (chemistry), volatile than strong salts. They may be similar in odor to the acid
An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
or base they are derived from. For example, sodium acetate, CH3COONa, smells similar to acetic acid CH3COOH.
Electrical conductivity
Salts are characteristically Insulator (electricity), insulators. Although they contain charged atoms or clusters, these materials do not typically electrical conductivity, conduct electricity to any significant extent when the substance is solid. In order to conduct, the charged particles must be Electrical mobility, mobile rather than stationary in a Crystal structure, crystal lattice. This is achieved to some degree at high temperatures when the defect concentration increases the ionic mobility and solid state ionic conductivity is observed. When the salts are Solution (chemistry), dissolved in a liquid or are melted into a liquid, they can conduct electricity because the ions become completely mobile. For this reason, molten salts and solutions containing dissolved salts (e.g., sodium chloride in water) can be used as electrolytes. This conductivity gain upon dissolving or melting is sometimes used as a defining characteristic of salts.
In some unusual salts: fast-ion conductors, and ionic glasses, one or more of the ionic components has a significant mobility, allowing conductivity even while the material as a whole remains solid. This is often highly temperature dependent, and may be the result of either a phase change or a high defect concentration. These materials are used in all solid-state supercapacitors, battery (electricity), batteries, and fuel cells, and in various kinds of chemical sensors.
Melting and boiling points
Electrostatic forces between particles are strongest when the charges are high, and the distance between the nuclei of the ions is small. In such cases, the compounds generally have very high melting
Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
and boiling point
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
The boiling point of a liquid varies depending upon the surrounding envi ...
s and a low Vapor pressure, vapour pressure. Trends in melting points can be even better explained when the structure and ionic size ratio is taken into account. Above their melting point, salts melt and become molten salts (although some salts such as aluminium chloride and iron(III) chloride show molecule-like structures in the liquid phase). Inorganic compounds with simple ions typically have small ions, and thus have high melting points, so are solids at room temperature. Some substances with larger ions, however, have a melting point below or near room temperature (often defined as up to 100 °C), and are termed ionic liquids. Ions in ionic liquids often have uneven charge distributions, or bulky substituents like hydrocarbon chains, which also play a role in determining the strength of the interactions and propensity to melt.
Even when the local structure and bonding of an ionic solid is disrupted sufficiently to melt it, there are still strong long-range electrostatic forces of attraction holding the liquid together and preventing ions boiling to form a gas phase. This means that even room temperature ionic liquids have low vapour pressures, and require substantially higher temperatures to boil. Boiling points exhibit similar trends to melting points in terms of the size of ions and strength of other interactions. When vapourized, the ions are still not freed of one another. For example, in the vapour phase sodium chloride exists as diatomic "molecules".
Brittleness
Most salts are very brittle. Once they reach the limit of their strength, they cannot deform malleability, malleably, because the strict alignment of positive and negative ions must be maintained. Instead the material undergoes fracture via cleavage (crystal), cleavage. As the temperature is elevated (usually close to the melting point) a Ductile-brittle transition temperature, ductile–brittle transition occurs, and plastic flow becomes possible by the motion of dislocations.
Compressibility
The compressibility of a salt is strongly determined by its structure, and in particular the coordination number. For example, halides with the caesium chloride structure (coordination number 8) are less compressible than those with the sodium chloride structure (coordination number 6), and less again than those with a coordination number of 4.
Colour
The Color of chemicals#Salts, colour of a salt is often different from the colour of chemicals#ions in aqueous solution, colour of an aqueous solution containing the constituent ions, or the hydrate
In chemistry, a hydrate is a substance that contains water or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understo ...
d form of the same compound.
The anions in compounds with bonds with the most ionic character tend to be colorless (with an absorption band in the ultraviolet part of the spectrum). In compounds with less ionic character, their color deepens through yellow, orange, red, and black (as the absorption band shifts to longer wavelengths into the visible spectrum).
The absorption band of simple cations shifts toward a shorter wavelength when they are involved in more covalent interactions. This occurs during solvation, hydration of metal ions, so colorless anhydrous salts with an anion absorbing in the infrared can become colorful in solution.
Salts exist in many different colors, which arise either from their constituent anions, cations or Solvation, solvates. For example:
* sodium chromate is made yellow by the chromate ion .
* potassium dichromate is made red-orange by the dichromate ion .
* cobalt(II) nitrate hexahydrate is made red by the chromophore of Water of crystallization, hydrated cobalt(II) .
* copper(II) sulfate pentahydrate is made blue by the hydrated copper(II) cation.
* potassium permanganate is made violet by the permanganate anion .
* nickel(II) chloride hexahydrate is made green by the hydrated nickel(II) chloride .
* sodium chloride
Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
NaCl and magnesium sulfate heptahydrate are colorless or white because the constituent cations and anions do not absorb light in the part of the spectrum that is visible to humans.
Some minerals are salts, some of which are soluble in water. Similarly, inorganic pigments tend not to be salts, because insolubility is required for fastness. Some organic dyes are salts, but they are virtually insoluble in water.
Taste
Salts can elicit all five basic tastes, e.g., Saltiness, salty (sodium chloride
Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
), sweet (lead diacetate, which will cause lead poisoning if ingested), Sour (taste), sour (potassium bitartrate), Bitter (taste), bitter (magnesium sulfate), and umami or Umami, savory (monosodium glutamate).
Odor
Salts of strong acids and strong bases ("#Strong salt, strong salts") are non-Volatility (chemistry), volatile and often odorless, whereas salts of either weak acids or weak bases ("#Weak salt, weak salts") may smell like the conjugate acid (e.g., acetates like acetic acid (vinegar) and cyanides like hydrogen cyanide (almonds)) or the conjugate base (e.g., ammonium salts like ammonia) of the component ions. That slow, partial decomposition is usually accelerated by the presence of water, since hydrolysis is the other half of the reversible reaction equation of formation of weak salts.
Uses
Salts have long had a wide variety of uses and applications. Many minerals are ionic. Humans have processed common salt (sodium chloride) for over 8000 years, using it first as a food seasoning and preservative, and now also in manufacturing, agriculture, water conditioning, for de-icing roads, and many other uses. Many salts are so widely used in society that they go by common names unrelated to their chemical identity. Examples of this include borax, calomel, milk of magnesia, muriatic acid, oil of vitriol, saltpeter, and slaked lime.
Soluble salts can easily be dissolved to provide electrolyte solutions. This is a simple way to control the concentration and ionic strength. The concentration of solutes affects many colligative properties, including increasing the osmotic pressure, and causing freezing-point depression and boiling-point elevation. Because the solutes are charged ions they also increase the electrical conductivity of the solution. The increased ionic strength reduces the thickness of the electrical double layer around colloidal particles, and therefore the stability of emulsions and Suspension (chemistry), suspensions.
The chemical identity of the ions added is also important in many uses. For example, fluoride containing compounds are dissolved to supply fluoride ions for water fluoridation.
Solid salts have long been used as paint pigments, and are resistant to organic solvents, but are sensitive to acidity or basicity. Since 1801 pyrotechnicians have described and widely used metal-containing salts as sources of colour in fireworks. Under intense heat, the electrons in the metal ions or small molecules can be excited. These electrons later return to lower energy states, and release light with a colour spectrum characteristic of the species present.
In chemical synthesis, salts are often used as Precursor (chemistry), precursors for high-temperature solid-state synthesis.
Many metals are geologically most abundant as salts within ores. To obtain the Chemical element, elemental materials, these ores are processed by smelting or electrolysis, in which redox reactions occur (often with a reducing agent such as carbon) such that the metal ions gain electrons to become neutral atoms.
Nomenclature
According to the nomenclature recommended by IUPAC, salts are named according to their composition, not their structure. In the most simple case of a binary salt with no possible ambiguity about the charges and thus the stoichiometry, the common name is written using two words. The name of the cation (the unmodified element name for monatomic cations) comes first, followed by the name of the anion. For example, MgCl2 is named magnesium chloride, and Na2SO4 is named sodium sulfate (, sulfate, is an example of a polyatomic ion). To obtain the empirical formula from these names, the stoichiometry can be deduced from the charges on the ions, and the requirement of overall charge neutrality.
If there are multiple different cations and/or anions, multiplicative prefixes (''di-'', ''tri-'', ''tetra-'', ...) are often required to indicate the relative compositions, and cations then anions are listed in alphabetical order. For example, KMgCl3 is named magnesium potassium trichloride to distinguish it from K2MgCl4, magnesium dipotassium tetrachloride (note that in both the empirical formula and the written name, the cations appear in alphabetical order, but the order varies between them because the Symbol (chemistry), symbol for potassium is K). When one of the ions already has a multiplicative prefix within its name, the alternate multiplicative prefixes (''bis-'', ''tris-'', ''tetrakis-'', ...) are used. For example, Ba(BrF4)2 is named barium bis(tetrafluoridobromate).
Compounds containing one or more elements which can exist in a variety of charge/oxidation states will have a stoichiometry that depends on which oxidation states are present, to ensure overall neutrality. This can be indicated in the name by specifying either the oxidation state of the elements present, or the charge on the ions. Because of the risk of ambiguity in allocating oxidation states, IUPAC prefers direct indication of the ionic charge numbers. These are written as an arabic numerals, arabic integer followed by the sign (... , 2−, 1−, 1+, 2+, ...) in parentheses directly after the name of the cation (without a space separating them). For example, FeSO4 is named iron(2+) sulfate (with the 2+ charge on the Fe2+, Fe2+ ions balancing the 2− charge on the sulfate ion), whereas Fe2(SO4)3 is named iron(3+) sulfate (because the two iron ions in each formula unit each have a charge of 3+, to balance the 2− on each of the three sulfate ions). Stock nomenclature, still in common use, writes the oxidation number in Roman numerals (... , −II, −I, 0, I, II, ...). So the examples given above would be named iron(II) sulfate and iron(III) sulfate respectively. For simple ions the ionic charge and the oxidation number are identical, but for polyatomic ions they often differ. For example, the uranyl(2+) ion, , has uranium in an oxidation state of +6, so would be called a dioxouranium(VI) ion in Stock nomenclature. An even older naming system for metal cations, also still widely used, appended the suffixes ''-ous'' and ''-ic'' to the Latin root of the name, to give special names for the low and high oxidation states. For example, this scheme uses "ferrous" and "ferric", for iron(II) and iron(III) respectively, so the examples given above were classically named ferrous sulfate and ferric sulfate.
Common salt-forming cations include:
* Ammonium
* Calcium
* Iron and
* Magnesium
* Potassium
* Pyridinium
* Quaternary ammonium cation, Quaternary ammonium , R being an alkyl group or an aryl group
* Sodium
* Copper
Common salt-forming anions (parent acids in parentheses where available) include:
* Acetate (acetic acid)
* Carbonate (carbonic acid)
* Chloride (hydrochloric acid)
* Citrate (citric acid)
* Cyanide (hydrocyanic acid)
* Fluoride (hydrofluoric acid)
* Nitrate (nitric acid)
* Nitrite (nitrous acid)
* Oxide (water)
* Phosphate (phosphoric acid)
* Sulfate (sulfuric acid)
Salts with varying number of hydrogen atoms replaced by cations as compared to their parent acid can be referred to as ''monobasic'', ''dibasic'', or ''tribasic'', identifying that one, two, or three hydrogen atoms have been replaced; ''polybasic'' salts refer to those with more than one hydrogen atom replaced. Examples include:
* Monosodium phosphate, Sodium phosphate monobasic (NaH2PO4)
* Disodium phosphate, Sodium phosphate dibasic (Na2HPO4)
* Trisodium phosphate, Sodium phosphate tribasic (Na3PO4)
Non-salt
Zwitterion
Zwitterions contain an anionic and a cationic centre in the same molecule, but are not considered salts. Examples of zwitterions are amino acids, many metabolites, peptides, and proteins.
See also
*Bonding in solids
*Ioliomics
*Salt metathesis reaction
*Bresle method (the method used to test for salt presence during coating applications)
*Carboxylate
*Halide
*Ionic bonds
*Natron
*Salinity
Notes
References
*Mark Kurlansky (2002). ''Salt: A World History''. Walker Publishing Company. .
Bibliography
*
*
*
*
*
*
*
*
*
*
*
*
*
*
{{refend
Chemical compounds
Salts,
Alchemical substances
Ions
Chemical compounds by chemical bond