HOME

TheInfoList



OR:

Rutherfordium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Rf and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
104, named after New Zealand-born British physicist
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
. As a synthetic element, it is not found in nature and can only be made in a laboratory. It is
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
; the most stable known
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass number ...
, 267Rf, has a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of about 48 minutes. In the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ...
, it is a
d-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-b ...
element and the second of the fourth-row
transition element In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s. It is in period 7 and is a group 4 element. Chemistry experiments have confirmed that rutherfordium behaves as the heavier
homolog In biology, homology is similarity due to shared ancestry between a pair of structures or genes in different taxa. A common example of homologous structures is the forelimbs of vertebrates, where the Bat wing development, wings of bats and Ori ...
to
hafnium Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by D ...
in group 4. The chemical properties of rutherfordium are characterized only partly. They compare well with the other group 4 elements, even though some calculations had indicated that the element might show significantly different properties due to relativistic effects. In the 1960s, small amounts of rutherfordium were produced at Joint Institute for Nuclear Research in the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
and at
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States national laboratory that is owned by, and conducts scientific research on behalf of, the United States Department of Energy. Located in ...
in
California California is a state in the Western United States, located along the Pacific Coast. With nearly 39.2million residents across a total area of approximately , it is the most populous U.S. state and the 3rd largest by area. It is also the ...
. Priority of discovery and hence the name of the element was disputed between Soviet and American scientists, and it was not until 1997 that the
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(IUPAC) established rutherfordium as the official name of the element.


Introduction


History


Discovery

Rutherfordium was reportedly first detected in 1964 at the Joint Institute for Nuclear Research at Dubna (
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
at the time). Researchers there bombarded a
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhib ...
-242 target with
neon Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypt ...
-22 ions and separated the reaction products by gradient thermochromatography after conversion to chlorides by interaction with ZrCl4. The team identified
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakd ...
activity contained within a volatile chloride portraying eka-hafnium properties. Though a half-life was not accurately determined, later calculations indicated that the product was most likely rutherfordium-259 (259Rf in standard notation): : + → → Cl4 In 1969, researchers at
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
conclusively synthesized the element by bombarding a
californium Californium is a radioactive chemical element with the symbol Cf and atomic number 98. The element was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding ...
-249 target with
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon ( carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-1 ...
ions and measured the alpha decay of 257Rf, correlated with the daughter decay of nobelium-253: : + → + 4 The American synthesis was independently confirmed in 1973 and secured the identification of rutherfordium as the parent by the observation of K-alpha
X-rays X-rays (or rarely, ''X-radiation'') are a form of high-energy electromagnetic radiation. In many languages, it is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it in 1895 and named it ' ...
in the elemental signature of the 257Rf decay product, nobelium-253.


Naming controversy

As a consequence of the initial competing claims of discovery, an element naming controversy arose. Since the Soviets claimed to have first detected the new element they suggested the name ''kurchatovium'' (Ku) in honor of
Igor Kurchatov Igor Vasil'evich Kurchatov (russian: Игорь Васильевич Курчатов; 12 January 1903 – 7 February 1960), was a Soviet physicist who played a central role in organizing and directing the former Soviet program of nuclear weapo ...
(1903–1960), former head of
Soviet nuclear research The Soviet atomic bomb project was the classified research and development program that was authorized by Joseph Stalin in the Soviet Union to develop nuclear weapons during and after World War II. Although the Soviet scientific community disc ...
. This name had been used in books of the
Soviet Bloc The Eastern Bloc, also known as the Communist Bloc and the Soviet Bloc, was the group of socialist states of Central and Eastern Europe, East Asia, Southeast Asia, Africa, and Latin America under the influence of the Soviet Union that existed du ...
as the official name of the element. The Americans, however, proposed ''rutherfordium'' (Rf) for the new element to honor
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
, who is known as the "father" of
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
. In 1992, the
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
/ IUPAP Transfermium Working Group (TWG) assessed the claims of discovery and concluded that both teams provided contemporaneous evidence to the synthesis of element 104 and that credit should be shared between the two groups. The American group wrote a scathing response to the findings of the TWG, stating that they had given too much emphasis on the results from the Dubna group. In particular they pointed out that the Russian group had altered the details of their claims several times over a period of 20 years, a fact that the Russian team does not deny. They also stressed that the TWG had given too much credence to the chemistry experiments performed by the Russians and accused the TWG of not having appropriately qualified personnel on the committee. The TWG responded by saying that this was not the case and having assessed each point raised by the American group said that they found no reason to alter their conclusion regarding priority of discovery. The IUPAC finally used the name suggested by the American team (''rutherfordium''). The International Union of Pure and Applied Chemistry (
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
) adopted ''unnilquadium'' (Unq) as a temporary, systematic element name, derived from the Latin names for digits 1, 0, and 4. In 1994, IUPAC suggested a set of names for elements 104 through 109, in which ''dubnium'' (Db) became element 104 and ''rutherfordium'' became element 106. This recommendation was criticized by the American scientists for several reasons. Firstly, their suggestions were scrambled: the names ''rutherfordium'' and ''hahnium'', originally suggested by Berkeley for elements 104 and 105, were respectively reassigned to elements 106 and 108. Secondly, elements 104 and 105 were given names favored by JINR, despite earlier recognition of LBL as an equal co-discoverer for both of them. Thirdly and most importantly, IUPAC rejected the name '' seaborgium'' for element 106, having just approved a rule that an element could not be named after a living person, even though the IUPAC had given the LBNL team the sole credit for its discovery. In 1997, IUPAC renamed elements 104 to 109, and gave element 104 the current name ''rutherfordium''. The name '' dubnium'' was given to element 105 at the same time.


Isotopes

Rutherfordium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Sixteen different isotopes have been reported with atomic masses from 253 to 270 (with the exceptions of 264 and 269). Most of these decay predominantly through spontaneous fission pathways.


Stability and half-lives

Out of isotopes whose half-lives are known, the lighter isotopes usually have shorter half-lives; half-lives of under 50 μs for 253Rf and 254Rf were observed. 256Rf, 258Rf, 260Rf are more stable at around 10 ms, 255Rf, 257Rf, 259Rf, and 262Rf live between 1 and 5 seconds, and 261Rf, 265Rf, and 263Rf are more stable, at around 1.1, 1.5, and 10 minutes respectively. The heaviest isotopes are the most stable, with 267Rf having a measured half-life of about 48 minutes. The lightest isotopes were synthesized by direct fusion between two lighter nuclei and as decay products. The heaviest isotope produced by direct fusion is 262Rf; heavier isotopes have only been observed as decay products of elements with larger atomic numbers. The heavy isotopes 266Rf and 268Rf have also been reported as
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. T ...
daughters of the dubnium isotopes 266Db and 268Db, but have short half-lives to
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakd ...
. It seems likely that the same is true for 270Rf, a possible daughter of 270Db. These three isotopes remain unconfirmed. In 1999, American scientists at the University of California, Berkeley, announced that they had succeeded in synthesizing three atoms of 293Og. These parent nuclei were reported to have successively emitted seven alpha particles to form 265Rf nuclei, but their claim was retracted in 2001. This isotope was later discovered in 2010 as the final product in the decay chain of 285Fl.


Predicted properties

Very few properties of rutherfordium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact that rutherfordium (and its parents) decays very quickly. A few singular chemistry-related properties have been measured, but properties of rutherfordium metal remain unknown and only predictions are available.


Chemical

Rutherfordium is the first transactinide element and the second member of the 6d series of transition metals. Calculations on its
ionization potential Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
s,
atomic radius The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, th ...
, as well as radii, orbital energies, and ground levels of its ionized states are similar to that of
hafnium Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by D ...
and very different from that of
lead Lead is a chemical element with the Symbol (chemistry), symbol Pb (from the Latin ) and atomic number 82. It is a heavy metals, heavy metal that is density, denser than most common materials. Lead is Mohs scale of mineral hardness#Intermediate ...
. Therefore, it was concluded that rutherfordium's basic properties will resemble those of other group 4 elements, below
titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
,
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
, and hafnium. Some of its properties were determined by gas-phase experiments and aqueous chemistry. The oxidation state +4 is the only stable state for the latter two elements and therefore rutherfordium should also exhibit a stable +4 state. In addition, rutherfordium is also expected to be able to form a less stable +3 state. The standard reduction potential of the Rf4+/Rf couple is predicted to be higher than −1.7 V. Initial predictions of the chemical properties of rutherfordium were based on calculations which indicated that the relativistic effects on the electron shell might be strong enough that the 7p orbitals would have a lower energy level than the 6d orbitals, giving it a
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair f ...
configuration of 6d1 7s2 7p1 or even 7s2 7p2, therefore making the element behave more like
lead Lead is a chemical element with the Symbol (chemistry), symbol Pb (from the Latin ) and atomic number 82. It is a heavy metals, heavy metal that is density, denser than most common materials. Lead is Mohs scale of mineral hardness#Intermediate ...
than hafnium. With better calculation methods and experimental studies of the chemical properties of rutherfordium compounds it could be shown that this does not happen and that rutherfordium instead behaves like the rest of the group 4 elements. Later it was shown in ab initio calculations with the high level of accuracy that the Rf atom has the ground state with the 6d2 7s2 valence configuration and the low-lying excited 6d1 7s2 7p1 state with the excitation energy of only 0.3–0.5 eV. In an analogous manner to zirconium and hafnium, rutherfordium is projected to form a very stable, refractory oxide, RfO2. It reacts with halogens to form tetrahalides, RfX4, which hydrolyze on contact with water to form oxyhalides RfOX2. The tetrahalides are volatile solids existing as monomeric tetrahedral molecules in the vapor phase. In the aqueous phase, the Rf4+ ion hydrolyzes less than titanium(IV) and to a similar extent as zirconium and hafnium, thus resulting in the RfO2+ ion. Treatment of the halides with halide ions promotes the formation of complex ions. The use of chloride and bromide ions produces the hexahalide complexes and . For the fluoride complexes, zirconium and hafnium tend to form hepta- and octa- complexes. Thus, for the larger rutherfordium ion, the complexes , and are possible.


Physical and atomic

Rutherfordium is expected to be a solid under normal conditions and have a hexagonal close-packed crystal structure (''c''/''a'' = 1.61), similar to its lighter congener hafnium. It should be a metal with
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
~17 g/cm3. The atomic radius of rutherfordium is expected to be ~150  pm. Due to relativistic stabilization of the 7s orbital and destabilization of the 6d orbital, Rf+ and Rf2+ ions are predicted to give up 6d electrons instead of 7s electrons, which is the opposite of the behavior of its lighter homologs. When under high pressure (variously calculated as 72 or ~50 GPa), rutherfordium is expected to transition to body-centered cubic crystal structure; hafnium transforms to this structure at 71±1 GPa, but has an intermediate ω structure that it transforms to at 38±8 GPa that should be lacking for rutherfordium.


Experimental chemistry


Gas phase

Early work on the study of the chemistry of rutherfordium focused on gas thermochromatography and measurement of relative deposition temperature adsorption curves. The initial work was carried out at Dubna in an attempt to reaffirm their discovery of the element. Recent work is more reliable regarding the identification of the parent rutherfordium radioisotopes. The isotope 261mRf has been used for these studies, though the long-lived isotope 267Rf (produced in the decay chain of 291Lv, 287Fl, and 283Cn) may be advantageous for future experiments. The experiments relied on the expectation that rutherfordium would begin the new 6d series of elements and should therefore form a volatile tetrachloride due to the tetrahedral nature of the molecule. Rutherfordium(IV) chloride is more volatile than its lighter homologue
hafnium(IV) chloride Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a cata ...
(HfCl4) because its bonds are more
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
. A series of experiments confirmed that rutherfordium behaves as a typical member of group 4, forming a tetravalent chloride (RfCl4) and bromide (RfBr4) as well as an oxychloride (RfOCl2). A decreased volatility was observed for when
potassium chloride Potassium chloride (KCl, or potassium salt) is a metal halide salt composed of potassium and chlorine. It is odorless and has a white or colorless vitreous crystal appearance. The solid dissolves readily in water, and its solutions have a sa ...
is provided as the solid phase instead of gas, highly indicative of the formation of nonvolatile mixed salt.


Aqueous phase

Rutherfordium is expected to have the electron configuration nf14 6d2 7s2 and therefore behave as the heavier homologue of
hafnium Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by D ...
in group 4 of the periodic table. It should therefore readily form a hydrated Rf4+ ion in strong acid solution and should readily form complexes in
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the dig ...
, hydrobromic or
hydrofluoric acid Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colourless, acidic and highly corrosive. It is used to make most fluorine-containing compounds; examples include the commonly used pharmaceutical antidepr ...
solutions. The most conclusive aqueous chemistry studies of rutherfordium have been performed by the Japanese team at
Japan Atomic Energy Research Institute The Japan Atomic Energy Research Institute ( ja, 日本原子力研究所) (JAERI) is a former semi-governmental organization that existed for the purpose of further nuclear power in Japan. It was created in June 1956 by the Atomic Energy Basic Law ...
using the isotope 261mRf. Extraction experiments from hydrochloric acid solutions using isotopes of rutherfordium, hafnium, zirconium, as well as the pseudo-group 4 element
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
have proved a non-actinide behavior for rutherfordium. A comparison with its lighter homologues placed rutherfordium firmly in group 4 and indicated the formation of a hexachlororutherfordate complex in chloride solutions, in a manner similar to hafnium and zirconium. : + 6 → Very similar results were observed in hydrofluoric acid solutions. Differences in the extraction curves were interpreted as a weaker affinity for fluoride ion and the formation of the hexafluororutherfordate ion, whereas hafnium and zirconium ions complex seven or eight fluoride ions at the concentrations used: : + 6 → Experiments performed in mixed sulfuric and nitric acid solutions shows that rutherfordium has a much weaker affinity towards forming sulfate complexes than hafnium. This result is in agreement with predictions, which expect rutherfordium complexes to be less stable than those of zirconium and hafnium because of a smaller ionic contribution to the bonding. This arises because rutherfordium has a larger ionic radius (76 pm) than zirconium (71 pm) and hafnium (72 pm), and also because of relativistic stabilisation of the 7s orbital and destabilisation and spin–orbit splitting of the 6d orbitals. Coprecipitation experiments performed in 2021 studied rutherfordium's behaviour in basic solution containing
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogeno ...
or
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkal ...
, using zirconium, hafnium, and thorium as comparisons. It was found that rutherfordium does not strongly coordinate with ammonia and instead coprecipitates out as a hydroxide, which is probably Rf(OH)4.


Notes


References


Bibliography

* * * * *


External links

*
Rutherfordium
at '' The Periodic Table of Videos'' (University of Nottingham)
WebElements.com – Rutherfordium
{{Good article Chemical elements Transition metals Synthetic elements