HOME

TheInfoList



OR:

Rubidium (37Rb) has 36
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s, with naturally occurring rubidium being composed of just two isotopes; 85Rb (72.2%) and the
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
87Rb (27.8%). 87Rb has a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of . It readily substitutes for
potassium Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
in
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Mi ...
s, and is therefore fairly widespread. 87Rb has been used extensively in dating rocks; 87Rb decays to stable
strontium Strontium is a chemical element; it has symbol Sr and atomic number 38. An alkaline earth metal, it is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to ...
-87 by emission of a beta particle (an electron ejected from the nucleus). During fractional crystallization, Sr tends to become concentrated in
plagioclase Plagioclase ( ) is a series of Silicate minerals#Tectosilicates, tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continu ...
, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
may increase over time, resulting in rocks with increasing Rb/Sr ratios with increasing differentiation. The highest ratios (10 or higher) occur in
pegmatite A pegmatite is an igneous rock showing a very coarse texture, with large interlocking crystals usually greater in size than and sometimes greater than . Most pegmatites are composed of quartz, feldspar, and mica, having a similar silicic c ...
s. If the initial amount of Sr is known or can be extrapolated, the age can be determined by measurement of the Rb and Sr concentrations and the 87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered. See rubidium–strontium dating for a more detailed discussion. Other than 87Rb, the longest-lived radioisotopes are 83Rb with a half-life of 86.2 days, 84Rb with a half-life of 33.1 days, and 86Rb with a half-life of 18.642 days. All other radioisotopes have half-lives less than a day. 82Rb is used in some cardiac
positron emission tomography Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, r ...
scans to assess myocardial perfusion. It has a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 1.273 minutes. It does not exist naturally, but can be made from the decay of 82Sr.


List of isotopes

, -id=Rubidium-72 , 72Rb , style="text-align:right" , 37 , style="text-align:right" , 35 , 71.95885(54)# , 103(22) ns , p , 71Kr , 1+# , , , -id=Rubidium-73 , 73Rb , style="text-align:right" , 37 , style="text-align:right" , 36 , 72.950605(44) , <81 ns , p , 72Kr , 3/2−# , , , -id=Rubidium-74 , 74Rb , style="text-align:right" , 37 , style="text-align:right" , 37 , 73.9442659(32) , 64.78(3) ms , β+ , 74Kr , 0+ , , , -id=Rubidium-75 , 75Rb , style="text-align:right" , 37 , style="text-align:right" , 38 , 74.9385732(13) , 19.0(12) s , β+ , 75Kr , 3/2− , , , -id=Rubidium-76 , rowspan=2, 76Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 39 , rowspan=2, 75.9350730(10) , rowspan=2, 36.5(6) s , β+ , 76Kr , rowspan=2, 1− , rowspan=2, , rowspan=2, , - , β+, α (3.8×10−7%) , 72Se , -id=Rubidium-76m , style="text-indent:1em" , 76mRb , colspan="3" style="text-indent:2em" , 316.93(8) keV , 3.050(7) μs , IT , 76Rb , (4+) , , , -id=Rubidium-77 , 77Rb , style="text-align:right" , 37 , style="text-align:right" , 40 , 76.9304016(14) , 3.78(4) min , β+ , 77Kr , 3/2− , , , -id=Rubidium-78 , 78Rb , style="text-align:right" , 37 , style="text-align:right" , 41 , 77.9281419(35) , 17.66(3) min , β+ , ''78Kr'' , 0+ , , , -id=Rubidium-78m1 , style="text-indent:1em" , 78m1Rb , colspan="3" style="text-indent:2em" , 46.84(14) keV , 910(40) ns , IT , 78Rb , (1−) , , , -id=Rubidium-78m2 , rowspan=2 style="text-indent:1em" , 78m2Rb , rowspan=2 colspan="3" style="text-indent:2em" , 111.19(22) keV , rowspan=2, 5.74(3) min , β+ (91%) , ''78Kr'' , rowspan=2, 4− , rowspan=2, , rowspan=2, , - , IT (9%) , 78Rb , -id=Rubidium-79 , 79Rb , style="text-align:right" , 37 , style="text-align:right" , 42 , 78.9239901(21) , 22.9(5) min , β+ , 79Kr , 5/2+ , , , -id=Rubidium-80 , 80Rb , style="text-align:right" , 37 , style="text-align:right" , 43 , 79.9225164(20) , 33.4(7) s , β+ , 80Kr , 1+ , , , -id=Rubidium-80m , style="text-indent:1em" , 80mRb , colspan="3" style="text-indent:2em" , 493.9(5) keV , 1.63(4) μs , IT , 80Rb , (6+) , , , -id=Rubidium-81 , 81Rb , style="text-align:right" , 37 , style="text-align:right" , 44 , 80.9189939(53) , 4.572(4) h , β+ , 81Kr , 3/2− , , , -id=Rubidium-81m , rowspan=2 style="text-indent:1em" , 81mRb , rowspan=2 colspan="3" style="text-indent:2em" , 86.31(7) keV , rowspan=2, 30.5(3) min , IT (97.6%) , 81Rb , rowspan=2, 9/2+ , rowspan=2, , rowspan=2, , - , β+ (2.4%) , 81Kr , - , 82 Rb , style="text-align:right" , 37 , style="text-align:right" , 45 , 81.9182090(32) , 1.2575(2) min , β+ , 82Kr , 1+ , , , -id=Rubidium-82m , rowspan=2 style="text-indent:1em" , 82mRb , rowspan=2 colspan="3" style="text-indent:2em" , 69.0(15) keV , rowspan=2, 6.472(6) h , β+ (>99.67%) , 82Kr , rowspan=2, 5− , rowspan=2, , rowspan=2, , - , IT (<0.33%) , 82Rb , -id=Rubidium-83 , 83Rb , style="text-align:right" , 37 , style="text-align:right" , 46 , 82.9151142(25) , 86.2(1) d , EC , 83Kr , 5/2− , , , -id=Rubidium-83m , style="text-indent:1em" , 83mRb , colspan="3" style="text-indent:2em" , 42.0780(20) keV , 7.8(7) ms , IT , 83Rb , 9/2+ , , , -id=Rubidium-84 , rowspan=2, 84Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 47 , rowspan=2, 83.9143752(24) , rowspan=2, 32.8(07) d , β+ (96.1%) , 84Kr , rowspan=2, 2− , rowspan=2, , rowspan=2, , - , β (3.9%) , 84Sr , -id=Rubidium-84m , rowspan=2 style="text-indent:1em" , 84mRb , rowspan=2 colspan="3" style="text-indent:2em" , 463.59(8) keV , rowspan=2, 20.26(4) min , IT , 84Rb , rowspan=2, 6− , rowspan=2, , rowspan=2, , - , β+ (<0.0012%) , 84Kr , -id=Rubidium-85 , 85Rb Fission product , style="text-align:right" , 37 , style="text-align:right" , 48 , 84.9117897360(54) , colspan=3 align=center, Stable , 5/2− , 0.7217(2) , , -id=Rubidium-85m , style="text-indent:1em" , 85mRb , colspan="3" style="text-indent:2em" , 514.0065(22) keV , 1.015(1) μs , IT , 85Rb , 9/2+ , , , -id=Rubidium-86 , rowspan=2, 86Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 49 , rowspan=2, 85.91116744(21) , rowspan=2, 18.645(8) d , β (99.99%) , 86Sr , rowspan=2, 2− , rowspan=2, , rowspan=2, , - , EC (.0052%) , 86Kr , -id=Rubidium-86m , rowspan=2 style="text-indent:1em" , 86mRb , rowspan=2 colspan="3" style="text-indent:2em" , 556.05(18) keV , rowspan=2, 1.017(3) min , IT (>99.7%) , 86Rb , rowspan=2, 6− , rowspan=2, , rowspan=2, , - , β (<0.3%) , 86Sr , - , 87Rb Primordial
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
Used in rubidium–strontium dating , style="text-align:right" , 37 , style="text-align:right" , 50 , 86.909180529(6) , 4.97(3)×1010 y , β , 87Sr , 3/2− , 0.2783(2) , , -id=Rubidium-88 , 88Rb , style="text-align:right" , 37 , style="text-align:right" , 51 , 87.91131559(17) , 17.78(3) min , β , 88Sr , 2− , , , -id=Rubidium-88m , style="text-indent:1em" , 88mRb , colspan="3" style="text-indent:2em" , 1373.8(3) keV , 123(13) ns , IT , 88Rb , (7+) , , , -id=Rubidium-89 , 89Rb , style="text-align:right" , 37 , style="text-align:right" , 52 , 88.9122781(58) , 15.32(10) min , β , 89Sr , 3/2− , , , -id=Rubidium-90 , 90Rb , style="text-align:right" , 37 , style="text-align:right" , 53 , 89.9147976(69) , 158(5) s , β , 90Sr , 0− , , , -id=Rubidium-90m , rowspan=2 style="text-indent:1em" , 90mRb , rowspan=2 colspan="3" style="text-indent:2em" , 106.90(3) keV , rowspan=2, 258(4) s , β (97.4%) , 90Sr , rowspan=2, 3− , rowspan=2, , rowspan=2, , - , IT (2.6%) , 90 Rb , -id=Rubidium-91 , 91Rb , style="text-align:right" , 37 , style="text-align:right" , 54 , 90.9165373(84) , 58.2(3) s , β , 91Sr , 3/2− , , , -id=Rubidium-92 , rowspan=2, 92Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 55 , rowspan=2, 91.9197285(66) , rowspan=2, 4.48(3) s , β (99.99%) , 92Sr , rowspan=2, 0− , rowspan=2, , rowspan=2, , - , β, n (0.0107%) , 91Sr , -id=Rubidium-93 , rowspan=2, 93Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 56 , rowspan=2, 92.9220393(84) , rowspan=2, 5.84(2) s , β (98.61%) , 93Sr , rowspan=2, 5/2− , rowspan=2, , rowspan=2, , - , β, n (1.39%) , 92Sr , -id=Rubidium-93m , style="text-indent:1em" , 93mRb , colspan="3" style="text-indent:2em" , 4423.1(15) keV , 111(11) ns , IT , 93Rb , (27/2−) , , , -id=Rubidium-94 , rowspan=2, 94Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 57 , rowspan=2, 93.9263948(22) , rowspan=2, 2.702(5) s , β (89.7%) , 94Sr , rowspan=2, 3− , rowspan=2, , rowspan=2, , - , β, n (10.3%) , 93Sr , -id=Rubidium-94m1 , style="text-indent:1em" , 94m1Rb , colspan="3" style="text-indent:2em" , 104.2(2) keV , 130(15) ns , IT , 94Rb , (0−) , , , -id=Rubidium-94m2 , style="text-indent:1em" , 94m2Rb , colspan="3" style="text-indent:2em" , 2074.9(14) keV , 107(16) ns , IT , 94Rb , (10−) , , , -id=Rubidium-95 , rowspan=2, 95Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 58 , rowspan=2, 94.929264(22) , rowspan=2, 377.7(8) ms , β (91.3%) , 95Sr , rowspan=2, 5/2− , rowspan=2, , rowspan=2, , - , β, n (8.7%) , 94Sr , -id=Rubidium-95m , style="text-indent:1em" , 95mRb , colspan="3" style="text-indent:2em" , 835.0(6) keV , <500 ns , IT , 95Rb , 9/2+# , , , -id=Rubidium-96 , rowspan=2, 96Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 59 , rowspan=2, 95.9341334(36) , rowspan=2, 201.5(9) ms , β (86.3%) , 96Sr , rowspan=2, 2− , rowspan=2, , rowspan=2, , - , β, n (13.7%) , 95Sr , -id=Rubidium-96m1 , style="text-indent:1em" , 96m1RbOrder of ground state and isomer is uncertain. , colspan="3" style="text-indent:2em" , 0(200)# keV , 200# ms
1 ms, , , 1(+#) , , , -id=Rubidium-96m2 , style="text-indent:1em" , 96m2Rb , colspan="3" style="text-indent:2em" , 1134.6(11) keV , 1.80(4) μs , IT , 96Rb , (10−) , , , -id=Rubidium-97 , rowspan=2, 97Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 60 , rowspan=2, 96.9371771(21) , rowspan=2, 169.1(6) ms , β (74.5%) , 97Sr , rowspan=2, 3/2+ , rowspan=2, , rowspan=2, , - , β, n (25.5%) , 96Sr , -id=Rubidium-97m , style="text-indent:1em" , 97mRb , colspan="3" style="text-indent:2em" , 76.6(2) keV , 5.7(6) μs , IT , 97Rb , (1/2,3/2)− , , , -id=Rubidium-98 , rowspan=3, 98Rb , rowspan=3 style="text-align:right" , 37 , rowspan=3 style="text-align:right" , 61 , rowspan=3, 97.941632(17) , rowspan=3, 115(6) ms , β(85.65%) , 98Sr , rowspan=3, (0−) , rowspan=3, , rowspan=3, , - , β, n (14.3%) , 97Sr , - , β, 2n (0.054%) , 96Sr , -id=Rubidium-98m1 , style="text-indent:1em" , 98m1Rb , colspan="3" style="text-indent:2em" , 73(26) keV , 96(3) ms , β , 98Sr , (3+) , , , -id=Rubidium-98m2 , style="text-indent:1em" , 98m2Rb , colspan="3" style="text-indent:2em" , 178.5(4) keV , 358(7) ns , IT , 98Rb , (2−) , , , -id=Rubidium-99 , rowspan=2, 99Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 62 , rowspan=2, 98.9451192(43) , rowspan=2, 54(4) ms , β (82.7%) , 99Sr , rowspan=2, (3/2+) , rowspan=2, , rowspan=2, , - , β, n (17.3%) , 98Sr , -id=Rubidium-100 , rowspan=3, 100Rb , rowspan=3 style="text-align:right" , 37 , rowspan=3 style="text-align:right" , 63 , rowspan=3, 99.950332(14) , rowspan=3, 51.3(16) ms , β (94.3%) , 100Sr , rowspan=3, 4−# , rowspan=3, , rowspan=3, , - , β, n (5.6%) , 99Sr , - , β, 2n (0.15%) , 98Sr , -id=Rubidium-101 , rowspan=2, 101Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 64 , rowspan=2, 100.954302(22) , rowspan=2, 31.8(33) ms , β (72%) , 101Sr , rowspan=2, 3/2+# , rowspan=2, , rowspan=2, , - , β, n (28%) , 100Sr , -id=Rubidium-102 , rowspan=2, 102Rb , rowspan=2 style="text-align:right" , 37 , rowspan=2 style="text-align:right" , 65 , rowspan=2, 101.960008(89) , rowspan=2, 37(4) ms , β, n (65%) , 101Sr , rowspan=2, (4+) , rowspan=2, , rowspan=2, , - , β (35%) , 102Sr , -id=Rubidium-103 , 103Rb , style="text-align:right" , 37 , style="text-align:right" , 66 , 102.96440(43)# , 26(11) ms , β , 103Sr , 3/2+# , , , -id=Rubidium-104 , 104Rb , style="text-align:right" , 37 , style="text-align:right" , 67 , 103.97053(54)# , 35# ms
550 ns, , , , , , -id=Rubidium-105 , 105Rb , style="text-align:right" , 37 , style="text-align:right" , 68 , , , , , , , , -id=Rubidium-106 , 106Rb , style="text-align:right" , 37 , style="text-align:right" , 69 , , , , , , ,


Rubidium-87

Rubidium-87 was the first and the most popular atom for making
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
s in dilute atomic gases. Even though rubidium-85 is more abundant, rubidium-87 has a positive scattering length, which means it is mutually repulsive, at low temperatures. This prevents a collapse of all but the smallest condensates. It is also easy to evaporatively cool, with a consistent strong mutual scattering. There is also a strong supply of cheap uncoated diode lasers typically used in CD writers, which can operate at the correct wavelength. Rubidium-87 has an atomic mass of 86.9091835 u, and a binding energy of 757,853 keV. Its atomic percent abundance is 27.835%, and has a half-life of .


See also

Daughter products other than rubidium * Isotopes of strontium * Isotopes of krypton * Isotopes of selenium


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Rubidium Rubidium