In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a subring of a
ring is a
subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of that is itself a ring when
binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation ...
s of addition and multiplication on ''R'' are restricted to the subset, and that shares the same
multiplicative identity
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
as .
[In general, not all subsets of a ring are rings.]
Definition
A subring of a ring is a subset of that preserves the structure of the ring, i.e. a ring with . Equivalently, it is both a
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
of and a
submonoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being .
Monoids are semigroups with identity ...
of .
Equivalently, is a subring
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it contains the multiplicative identity of , and is
closed under multiplication and subtraction. This is sometimes known as the ''subring test''.
Variations
Some mathematicians define rings without requiring the existence of a multiplicative identity (see '). In this case, a subring of is a subset of that is a ring for the operations of (this does imply it contains the additive identity of ). This alternate definition gives a strictly weaker condition, even for rings that do have a multiplicative identity, in that all
ideals become subrings, and they may have a multiplicative identity that differs from the one of . With the definition requiring a multiplicative identity, which is used in the rest of this article, the only ideal of that is a subring of is itself.
Examples
* The
ring of integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
is a subring of both the
field of
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s and the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...