In
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, relativistic quantum mechanics (RQM) is any
Poincaré
Poincaré is a French surname. Notable people with the surname include:
* Henri Poincaré
Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philos ...
-
covariant formulation of
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
(QM). This theory is applicable to
massive particles propagating at all
velocities up to those comparable to the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
''c'', and can accommodate
massless particle
In particle physics, a massless particle is an elementary particle whose invariant mass is zero. At present the only confirmed massless particle is the photon.
Other particles and quasiparticles
Standard Model gauge bosons
The photon (carrier of ...
s. The theory has application in
high-energy physics
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
,
particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
and
accelerator physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams ...
,
as well as
atomic physics
Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned wit ...
,
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
and
condensed matter physics
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
. ''Non-relativistic quantum mechanics'' refers to the
mathematical formulation of quantum mechanics
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, whic ...
applied in the context of
Galilean relativity
Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his ''Dialogue Concerning the Two Chief World Systems'' using t ...
, more specifically quantizing the equations of
classical mechanics
Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
by replacing dynamical variables by
operators. ''Relativistic quantum mechanics'' (RQM) is quantum mechanics applied with
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
. Although the earlier formulations, like the
Schrödinger picture and
Heisenberg picture
In physics, the Heisenberg picture or Heisenberg representation is a Dynamical pictures, formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which observables incorporate a dependency on time, but the quantum state, st ...
were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.
Key features common to all RQMs include: the prediction of
antimatter
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
,
spin magnetic moment
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic ...
s of
elementary spin-1/2
In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of . The spin number describes how many symmetrical facets a particle has in one f ...
fermion
In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s,
fine structure
In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom ...
, and quantum dynamics of
charged particle
In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
s in
electromagnetic field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
s.
The key result is the
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
, from which these predictions emerge automatically. By contrast, in non-relativistic quantum mechanics, terms have to be introduced artificially into the
Hamiltonian operator
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's ''energy spectrum'' or its set of ''energy eigenvalu ...
to achieve agreement with experimental observations.
The most successful (and most widely used) RQM is ''relativistic
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
'' (QFT), in which elementary particles are interpreted as ''field quanta''. A unique consequence of QFT that has been tested against other RQMs is the failure of conservation of particle number, for example, in
matter creation and
annihilation
In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy a ...
.
Paul Dirac
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
's work between 1927 and 1933 shaped the synthesis of special relativity and quantum mechanics. His work was instrumental, as he formulated the Dirac equation and also originated
quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
, both of which were successful in combining the two theories.
In this article, the equations are written in familiar 3D
vector calculus
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
notation and use hats for
operators (not necessarily in the literature), and where space and time components can be collected,
tensor index notation
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
is shown also (frequently used in the literature), in addition the
Einstein summation convention
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies s ...
is used.
SI units
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official st ...
are used here;
Gaussian units
Gaussian units constitute a metric system of units of measurement. This system is the most common of the several electromagnetic unit systems based on the centimetre–gram–second system of units (CGS). It is also called the Gaussian unit syst ...
and
natural units
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light may be set to 1, and it may then be omitted, equa ...
are common alternatives. All equations are in the position representation; for the momentum representation the equations have to be
Fourier-transformed see
position and momentum space.
Combining special relativity and quantum mechanics
One approach is to modify the Schrödinger picture to be consistent with special relativity.
A
postulate of quantum mechanics is that the
time evolution of any quantum system is given by the
Schrödinger equation
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ...
:
:
using a suitable
Hamiltonian operator
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's ''energy spectrum'' or its set of ''energy eigenvalu ...
corresponding to the system. The solution is a
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
-valued
wavefunction
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
, a
function of the
3D position vector
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point ''P'' in space. Its length represents the distance in relation to an arbitrary reference origin ''O'', and ...
of the particle at time , describing the behavior of the system.
Every particle has a non-negative
spin quantum number
In physics and chemistry, the spin quantum number is a quantum number (designated ) that describes the intrinsic angular momentum (or spin angular momentum, or simply ''spin'') of an electron or other particle. It has the same value for all ...
. The number is an integer, odd for
fermion
In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s and even for
boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s. Each has ''z''-projection quantum numbers; .
[Other common notations include and etc., but this would clutter expressions with unnecessary subscripts. The subscripts labeling spin values are not to be confused for tensor indices nor the ]Pauli matrices
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () ...
. This is an additional discrete variable the wavefunction requires; .
Historically, in the early 1920s
Pauli,
Kronig,
Uhlenbeck and
Goudsmit were the first to propose the concept of spin. The inclusion of spin in the wavefunction incorporates the
Pauli exclusion principle
In quantum mechanics, the Pauli exclusion principle (German: Pauli-Ausschlussprinzip) states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that o ...
(1925) and the more general
spin–statistics theorem (1939) due to
Fierz, rederived by Pauli a year later. This is the explanation for a diverse range of
subatomic particle
In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, lik ...
behavior and phenomena: from the
electronic configurations of atoms, nuclei (and therefore all
elements on the
periodic table
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
and their
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
), to the quark configurations and
colour charge (hence the properties of
baryon
In particle physics, a baryon is a type of composite particle, composite subatomic particle that contains an odd number of valence quarks, conventionally three. proton, Protons and neutron, neutrons are examples of baryons; because baryons are ...
s and
meson
In particle physics, a meson () is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, the ...
s).
A fundamental prediction of special relativity is the relativistic
energy–momentum relation
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It i ...
; for a particle of
rest mass
The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
, and in a particular
frame of reference
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale have been specified in physical space. It ...
with
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
and 3-
momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
with
magnitude
Magnitude may refer to:
Mathematics
*Euclidean vector, a quantity defined by both its magnitude and its direction
*Magnitude (mathematics), the relative size of an object
*Norm (mathematics), a term for the size or length of a vector
*Order of ...
in terms of the
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
, it is:
:
These equations are used together with the
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
and
momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
operators, which are respectively:
:
to construct a
relativistic wave equation (RWE): a
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.
The function is often thought of as an "unknown" that solves the equation, similar to ho ...
consistent with the energy–momentum relation, and is solved for to predict the quantum dynamics of the particle. For space and time to be placed on equal footing, as in relativity, the orders of space and time
partial derivative
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
s should be equal, and ideally as low as possible, so that no initial values of the derivatives need to be specified. This is important for probability interpretations, exemplified below. The lowest possible order of any differential equation is the first (zeroth order derivatives would not form a differential equation).
The
Heisenberg picture
In physics, the Heisenberg picture or Heisenberg representation is a Dynamical pictures, formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which observables incorporate a dependency on time, but the quantum state, st ...
is another formulation of QM, in which case the wavefunction is ''time-independent'', and the operators contain the time dependence, governed by the equation of motion:
:
This equation is also true in RQM, provided the Heisenberg operators are modified to be consistent with SR.
Historically, around 1926,
Schrödinger and
Heisenberg show that wave mechanics and
matrix mechanics
Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum ...
are equivalent, later furthered by Dirac using
transformation theory.
A more modern approach to RWEs, first introduced during the time RWEs were developing for particles of any spin, is to apply
representations of the Lorentz group
The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrix (mathematics), matrices, linear transformations, or unitary operators on some Hilbert space; it has a v ...
.
Space and time
In
classical mechanics
Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
and non-relativistic QM, time is an absolute quantity all observers and particles can always agree on, "ticking away" in the background independent of space. Thus in non-relativistic QM one has for a
many particle system .
In
relativistic mechanics
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities o ...
, the
spatial coordinates and
coordinate time are ''not'' absolute; any two observers moving relative to each other can measure different locations and times of
events. The position and time coordinates combine naturally into a
four-dimensional spacetime position corresponding to events, and the energy and 3-momentum combine naturally into the
four-momentum
In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum i ...
of a dynamic particle, as measured in ''some''
reference frame
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points, defined as geometric ...
, change according to a
Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant vel ...
as one measures in a different frame boosted and/or rotated relative the original frame in consideration. The derivative operators, and hence the energy and 3-momentum operators, are also non-invariant and change under Lorentz transformations.
Under a proper
orthochronous Lorentz transformation in
Minkowski space
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.
The model helps show how a ...
, all one-particle quantum states locally transform under some
representation of the
Lorentz group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physi ...
:
[;]
;
:
where is a finite-dimensional representation, in other words a
square matrix
In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Squ ...
. Again, is thought of as a
column vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some , c ...
containing components with the allowed values of . The
quantum number
In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system.
To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantu ...
s and as well as other labels, continuous or discrete, representing other quantum numbers are suppressed. One value of may occur more than once depending on the representation.
Non-relativistic and relativistic Hamiltonians
The
classical Hamiltonian for a particle in a
potential
Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
is the
kinetic energy
In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.
In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
plus the
potential energy
In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
, with the corresponding quantum operator in the
Schrödinger picture:
:
and substituting this into the above Schrödinger equation gives a non-relativistic QM equation for the wavefunction: the procedure is a straightforward substitution of a simple expression. By contrast this is not as easy in RQM; the energy–momentum equation is quadratic in energy ''and'' momentum leading to difficulties. Naively setting:
:
is not helpful for several reasons. The square root of the operators cannot be used as it stands; it would have to be expanded in a
power series
In mathematics, a power series (in one variable) is an infinite series of the form
\sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots
where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
before the momentum operator, raised to a power in each term, could act on . As a result of the power series, the space and time
derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s are ''completely asymmetric'': infinite-order in space derivatives but only first order in the time derivative, which is inelegant and unwieldy. Again, there is the problem of the non-invariance of the energy operator, equated to the square root which is also not invariant. Another problem, less obvious and more severe, is that it can be shown to be
nonlocal and can even ''violate
causality'': if the particle is initially localized at a point so that is finite and zero elsewhere, then at any later time the equation predicts delocalization everywhere, even for which means the particle could arrive at a point before a pulse of light could. This would have to be remedied by the additional constraint .
There is also the problem of incorporating spin in the Hamiltonian, which isn't a prediction of the non-relativistic Schrödinger theory. Particles with spin have a corresponding spin magnetic moment quantized in units of , the
Bohr magneton
In atomic physics, the Bohr magneton (symbol ) is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum.
In SI units, the Bohr magneton is defined as
\mu_\mat ...
:
:
where is the (spin)
g-factor for the particle, and the
spin operator, so they interact with electromagnetic fields. For a particle in an externally applied
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
, the interaction term
:
has to be added to the above non-relativistic Hamiltonian. On the contrary; a relativistic Hamiltonian introduces spin ''automatically'' as a requirement of enforcing the relativistic energy-momentum relation.
Relativistic Hamiltonians are analogous to those of non-relativistic QM in the following respect; there are terms including
rest mass
The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
and interaction terms with externally applied fields, similar to the classical potential energy term, as well as momentum terms like the classical kinetic energy term. A key difference is that relativistic Hamiltonians contain spin operators in the form of
matrices
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the ...
, in which the
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
runs over the spin index , so in general a relativistic Hamiltonian:
:
is a function of space, time, and the momentum and spin operators.
The Klein–Gordon and Dirac equations for free particles
Substituting the energy and momentum operators directly into the energy–momentum relation may at first sight seem appealing, to obtain the
Klein–Gordon equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is named after Oskar Klein and Walter Gordon. It is second-order i ...
:
:
and was discovered by many people because of the straightforward way of obtaining it, notably by Schrödinger in 1925 before he found the non-relativistic equation named after him, and by Klein and Gordon in 1927, who included electromagnetic interactions in the equation. This ''is''
relativistically invariant, yet this equation alone isn't a sufficient foundation for RQM for at least two reasons: one is that negative-energy states are solutions,
another is the density (given below), and this equation as it stands is only applicable to spinless particles. This equation can be factored into the form:
:
where and are not simply numbers or vectors, but 4 × 4
Hermitian matrices that are required to
anticommute for :
:
and square to the
identity matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
:
:
so that terms with mixed second-order derivatives cancel while the second-order derivatives purely in space and time remain. The first factor:
:
is the Dirac equation. The other factor is also the Dirac equation, but for a particle of
negative mass
In theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and exhibit strange properties ...
.
Each factor is relativistically invariant. The reasoning can be done the other way round: propose the Hamiltonian in the above form, as Dirac did in 1928, then pre-multiply the equation by the other factor of operators , and comparison with the KG equation determines the constraints on and . The positive mass equation can continue to be used without loss of continuity. The matrices multiplying suggest it isn't a scalar wavefunction as permitted in the KG equation, but must instead be a four-component entity. The Dirac equation still predicts negative energy solutions,
so Dirac postulated that negative energy states are always occupied, because according to the
Pauli principle
In quantum mechanics, the Pauli exclusion principle (German: Pauli-Ausschlussprinzip) states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that o ...
,
electronic transition
In atomic physics and chemistry, an atomic electron transition (also called an atomic transition, quantum jump, or quantum leap) is an electron changing from one energy level to another within an atom or artificial atom. The time scale of a qua ...
s from positive to negative energy levels in
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s would be forbidden. See
Dirac sea for details.
Densities and currents
In non-relativistic quantum mechanics, the
square modulus of the
wavefunction
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
gives the
probability density function
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
. This is the
Copenhagen interpretation
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretat ...
, circa 1927. In RQM, while is a wavefunction, the probability interpretation is not the same as in non-relativistic QM. Some RWEs do not predict a probability density or
probability current (really meaning ''probability current density'') because they are ''not''
positive-definite function
In mathematics, a positive-definite function is, depending on the context, either of two types of function.
Definition 1
Let \mathbb be the set of real numbers and \mathbb be the set of complex numbers.
A function f: \mathbb \to \mathbb is ...
s of space and time. The
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
does:
:
where the dagger denotes the
Hermitian adjoint
In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule
:\langle Ax,y \rangle = \langle x,A^*y \rangle,
where \l ...
(authors usually write for the
Dirac adjoint) and is the
probability four-current, while the
Klein–Gordon equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is named after Oskar Klein and Walter Gordon. It is second-order i ...
does not:
:
where is the
four-gradient. Since the initial values of both and may be freely chosen, the density can be negative.
Instead, what appears look at first sight a "probability density" and "probability current" has to be reinterpreted as
charge density
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in co ...
and
current density
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ...
when multiplied by
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
. Then, the wavefunction is not a wavefunction at all, but reinterpreted as a ''field''.
The density and current of electric charge always satisfy a
continuity equation
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity ...
:
:
as charge is a
conserved quantity
A conserved quantity is a property or value that remains constant over time in a system even when changes occur in the system. In mathematics, a conserved quantity of a dynamical system is formally defined as a function of the dependent vari ...
. Probability density and current also satisfy a continuity equation because probability is conserved, however this is only possible in the absence of interactions.
Spin and electromagnetically interacting particles
Including interactions in RWEs is generally difficult.
Minimal coupling is a simple way to include the electromagnetic interaction. For one charged particle of
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
in an electromagnetic field, given by the
magnetic vector potential
In classical electromagnetism, magnetic vector potential (often denoted A) is the vector quantity defined so that its curl is equal to the magnetic field, B: \nabla \times \mathbf = \mathbf. Together with the electric potential ''φ'', the ma ...
defined by the magnetic field , and
electric scalar potential , this is:
:
where is the
four-momentum
In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum i ...
that has a corresponding
4-momentum operator, and the
four-potential
An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.Gravitation, J.A. W ...
. In the following, the non-relativistic limit refers to the limiting cases:
:
that is, the total energy of the particle is approximately the rest energy for small electric potentials, and the momentum is approximately the classical momentum.
Spin 0
In RQM, the KG equation admits the minimal coupling prescription;
:
In the case where the charge is zero, the equation reduces trivially to the free KG equation so nonzero charge is assumed below. This is a scalar equation that is invariant under the ''irreducible'' one-dimensional scalar representation of the Lorentz group. This means that all of its solutions will belong to a direct sum of representations. Solutions that do not belong to the irreducible representation will have two or more ''independent'' components. Such solutions cannot in general describe particles with nonzero spin since spin components are not independent. Other constraint will have to be imposed for that, e.g. the Dirac equation for spin , see below. Thus if a system satisfies the KG equation ''only'', it can only be interpreted as a system with zero spin.
The electromagnetic field is treated classically according to
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
and the particle is described by a wavefunction, the solution to the KG equation. The equation is, as it stands, not always very useful, because massive spinless particles, such as the ''π''-mesons, experience the much stronger strong interaction in addition to the electromagnetic interaction. It does, however, correctly describe charged spinless bosons in the absence of other interactions.
The KG equation is applicable to spinless charged
boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s in an external electromagnetic potential.
As such, the equation cannot be applied to the description of atoms, since the electron is a spin particle. In the non-relativistic limit the equation reduces to the Schrödinger equation for a spinless charged particle in an electromagnetic field:
:
Spin
Non relativistically, spin was ''
phenomenologically'' introduced in the
Pauli equation
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic f ...
by
Pauli in 1927 for particles in an
electromagnetic field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
:
:
by means of the 2 × 2
Pauli matrices
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () ...
, and is not just a scalar wavefunction as in the non-relativistic Schrödinger equation, but a two-component
spinor field
In differential geometry, given a spin structure on an n-dimensional orientable Riemannian manifold (M, g),\, one defines the spinor bundle to be the complex vector bundle \pi_\colon\to M\, associated to the corresponding principal bundle \pi_\co ...
:
:
where the subscripts ↑ and ↓ refer to the "spin up" () and "spin down" () states.
[This spinor notation is not necessarily standard; the literature usually writes or etc., but in the context of spin , this informal identification is commonly made.]
In RQM, the Dirac equation can also incorporate minimal coupling, rewritten from above;
:
and was the first equation to accurately ''predict'' spin, a consequence of the 4 × 4
gamma matrices
In mathematical physics, the gamma matrices, \ \left\\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra \ \mathr ...
. There is a 4 × 4 identity matrix pre-multiplying the energy operator (including the potential energy term), conventionally not written for simplicity and clarity (i.e. treated like the number 1). Here is a four-component spinor field, which is conventionally split into two two-component spinors in the form:
[Again this notation is not necessarily standard, the more advanced literature usually writes
: etc.,
but here we show informally the correspondence of energy, helicity, and spin states.]
:
The 2-spinor corresponds to a particle with 4-momentum and charge and two spin states (, as before). The other 2-spinor corresponds to a similar particle with the same mass and spin states, but ''negative'' 4-momentum and ''negative'' charge , that is, negative energy states,
time-reversed momentum, and
negated charge. This was the first interpretation and prediction of a particle and ''corresponding
antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
''. See
Dirac spinor
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain comb ...
and
bispinor
In physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifi ...
for further description of these spinors. In the non-relativistic limit the Dirac equation reduces to the Pauli equation (see
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
for how). When applied a one-electron atom or ion, setting and to the appropriate electrostatic potential, additional relativistic terms include the
spin–orbit interaction, electron
gyromagnetic ratio
In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol , gamma. Its SI u ...
, and
Darwin term. In ordinary QM these terms have to be put in by hand and treated using
perturbation theory
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
. The positive energies do account accurately for the fine structure.
Within RQM, for massless particles the Dirac equation reduces to:
:
the first of which is the
Weyl equation
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three ...
, a considerable simplification applicable for massless
neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s.
[.] This time there is a 2 × 2
identity matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
pre-multiplying the energy operator conventionally not written. In RQM it is useful to take this as the zeroth Pauli matrix which couples to the energy operator (time derivative), just as the other three matrices couple to the momentum operator (spatial derivatives).
The Pauli and gamma matrices were introduced here, in theoretical physics, rather than
pure mathematics
Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
itself. They have applications to
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
s and to the
SO(2)
In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers
\mathbb T = \.
The circle g ...
and
SO(3)
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition.
By definition, a rotation about the origin is a ...
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
s, because they satisfy the important
commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
nbsp;, and
anticommutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
nbsp;, sub>+ relations respectively:
:
where is the
three-dimensional
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (''coordinates'') are required to determine the position (geometry), position of a point (geometry), poi ...
Levi-Civita symbol
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers defined from the sign of a permutation of the natural numbers , for some ...
. The gamma matrices form
bases in
Clifford algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real number ...
, and have a connection to the components of the flat spacetime
Minkowski metric
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of general_relativity, gravitation. It combines inertial space and time manifolds into a four-dimensional model.
The model ...
in the anticommutation relation:
:
(This can be extended to
curved space
Curved space often refers to a spatial geometry which is not "flat", where a '' flat space'' has zero curvature, as described by Euclidean geometry. Curved spaces can generally be described by Riemannian geometry, though some simple cases can be ...
time by introducing
vierbein
The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independe ...
s, but is not the subject of special relativity).
In 1929, the
Breit equation was found to describe two or more electromagnetically interacting massive spin fermions to first-order relativistic corrections; one of the first attempts to describe such a relativistic quantum
many-particle system. This is, however, still only an approximation, and the Hamiltonian includes numerous long and complicated sums.
Helicity and chirality
The
helicity operator is defined by;
:
where p is the momentum operator, S the spin operator for a particle of spin ''s'', ''E'' is the total energy of the particle, and ''m''
0 its rest mass. Helicity indicates the orientations of the spin and translational momentum vectors. Helicity is frame-dependent because of the 3-momentum in the definition, and is quantized due to spin quantization, which has discrete positive values for parallel alignment, and negative values for antiparallel alignment.
An automatic occurrence in the Dirac equation (and the Weyl equation) is the projection of the spin operator on the 3-momentum (times ''c''), , which is the helicity (for the spin case) times
.
For massless particles the helicity simplifies to:
:
Higher spins
The Dirac equation can only describe particles of spin . Beyond the Dirac equation, RWEs have been applied to
free particle
In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. I ...
s of various spins. In 1936, Dirac extended his equation to all fermions, three years later
Fierz and Pauli rederived the same equation. The
Bargmann–Wigner equations were found in 1948 using Lorentz group theory, applicable for all free particles with any spin. Considering the factorization of the KG equation above, and more rigorously by
Lorentz group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physi ...
theory, it becomes apparent to introduce spin in the form of matrices.
The wavefunctions are multicomponent
spinor field
In differential geometry, given a spin structure on an n-dimensional orientable Riemannian manifold (M, g),\, one defines the spinor bundle to be the complex vector bundle \pi_\colon\to M\, associated to the corresponding principal bundle \pi_\co ...
s, which can be represented as
column vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some , c ...
s of
functions of space and time:
:
where the expression on the right is the
Hermitian conjugate
In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule
:\langle Ax,y \rangle = \langle x,A^*y \rangle,
where \l ...
. For a ''massive'' particle of spin , there are components for the particle, and another for the corresponding
antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
(there are possible values in each case), altogether forming a -component spinor field:
:
with the + subscript indicating the particle and − subscript for the antiparticle. However, for ''massless'' particles of spin ''s'', there are only ever two-component spinor fields; one is for the particle in one helicity state corresponding to +''s'' and the other for the antiparticle in the opposite helicity state corresponding to −''s'':
:
According to the relativistic energy-momentum relation, all massless particles travel at the speed of light, so particles traveling at the speed of light are also described by two-component spinors. Historically,
Élie Cartan
Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He ...
found the most general form of
spinor
In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
s in 1913, prior to the spinors revealed in the RWEs following the year 1927.
For equations describing higher-spin particles, the inclusion of interactions is nowhere near as simple minimal coupling, they lead to incorrect predictions and self-inconsistencies. For spin greater than , the RWE is not fixed by the particle's mass, spin, and electric charge; the electromagnetic moments (
electric dipole moment
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall Chemical polarity, polarity. The International System of Units, SI unit for electric ...
s and
magnetic dipole moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
s) allowed by the
spin quantum number
In physics and chemistry, the spin quantum number is a quantum number (designated ) that describes the intrinsic angular momentum (or spin angular momentum, or simply ''spin'') of an electron or other particle. It has the same value for all ...
are arbitrary. (Theoretically,
magnetic charge would contribute also). For example, the spin case only allows a magnetic dipole, but for spin 1 particles magnetic quadrupoles and electric dipoles are also possible.
For more on this topic, see
multipole expansion
A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system (the polar and azimuthal angles) for three-dimensional Euclidean space, \R^3. Multipo ...
and (for example) Cédric Lorcé (2009).
Velocity operator
The Schrödinger/Pauli velocity operator can be defined for a massive particle using the classical definition , and substituting quantum operators in the usual way:
:
which has eigenvalues that take ''any'' value. In RQM, the Dirac theory, it is:
: