In mathematics, a regular matroid is a
matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being ...
that can be
represented over all
fields.
Definition
A
matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being ...
is defined to be a family of subsets of a finite set, satisfying certain axioms. The sets in the family are called "independent sets". One of the ways of constructing a matroid is to select a finite set of vectors in a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
, and to define a subset of the vectors to be independent in the matroid when it is
linearly independent
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts ...
in the vector space. Every family of sets constructed in this way is a matroid, but not every matroid can be constructed in this way, and the vector spaces over different
fields lead to different sets of matroids that can be constructed from them.
A matroid
is regular when, for every field
,
can be represented by a system of vectors over
.
[.]
Properties
If a matroid is regular, so is its
dual matroid,
and so is every one of its
minors. Every direct sum of regular matroids remains regular.
Every
graphic matroid
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called c ...
(and every co-graphic matroid) is regular. Conversely, every regular matroid may be constructed by combining graphic matroids, co-graphic matroids, and a certain ten-element matroid that is neither graphic nor co-graphic, using an operation for combining matroids that generalizes the
clique-sum
In graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs ''G'' and ''H'' each contain cliques of equal size, th ...
operation on graphs.
The number of bases in a regular matroid may be computed as the
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
of an associated matrix, generalizing
Kirchhoff's matrix-tree theorem for
graphic matroid
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called c ...
s.
Characterizations
The
uniform matroid (the four-point line) is not regular: it cannot be realized over the two-element
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
GF(2)
(also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field of two elements (GF is the initialism of ''Galois field'', another name for finite fields). Notations and \mathbb Z_2 may be encountered although they can be confused with ...
, so it is not a
binary matroid, although it can be realized over all other fields. The matroid of the
Fano plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines ...
(a rank-three matroid in which seven of the triples of points are dependent) and its dual are also not regular: they can be realized over GF(2), and over all fields of characteristic two, but not over any other fields than those. As showed, these three examples are fundamental to the theory of regular matroids: every non-regular matroid has at least one of these three as a
minor. Thus, the regular matroids are exactly the matroids that do not have one of the three forbidden minors
, the Fano plane, or its dual.
[.]
If a matroid is regular, it must clearly be realizable over the two fields GF(2) and GF(3). The converse is true: every matroid that is realizable over both of these two fields is regular. The result follows from a forbidden minor characterization of the matroids realizable over these fields, part of a family of results codified by
Rota's conjecture.
The regular matroids are the matroids that can be defined from a
totally unimodular matrix, a matrix in which every square submatrix has determinant 0, 1, or −1. The vectors realizing the matroid may be taken as the rows of the matrix. For this reason, regular matroids are sometimes also called unimodular matroids. The equivalence of regular matroids and unimodular matrices, and their characterization by forbidden minors, are deep results of
W. T. Tutte, originally proved by him using the
Tutte homotopy theorem.
later published an alternative and simpler proof of the characterization of unimodular matrices by forbidden minors.
Algorithms
There is a
polynomial time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by ...
algorithm for testing whether a matroid is regular, given access to the matroid through an
independence oracle
In mathematics and computer science, a matroid oracle is a subroutine through which an algorithm may access a matroid, an abstract combinatorial structure that can be used to describe the linear dependencies between vectors in a vector space or th ...
.
[.]
References
{{reflist, colwidth=30em
Matroid theory