HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
full subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitivel ...
''A'' of a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
''B'' is said to be reflective in ''B'' when the inclusion functor from ''A'' to ''B'' has a
left adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
. This adjoint is sometimes called a ''reflector'', or ''localization''. Dually, ''A'' is said to be coreflective in ''B'' when the inclusion functor has a right adjoint. Informally, a reflector acts as a kind of completion operation. It adds in any "missing" pieces of the structure in such a way that reflecting it again has no further effect.


Definition

A full subcategory A of a category B is said to be reflective in B if for each B- object ''B'' there exists an A-object A_B and a B-
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
r_B \colon B \to A_B such that for each B-morphism f\colon B\to A to an A-object A there exists a unique A-morphism \overline f \colon A_B \to A with \overline f\circ r_B=f. : The pair (A_B,r_B) is called the A-reflection of ''B''. The morphism r_B is called the A-reflection arrow. (Although often, for the sake of brevity, we speak about A_B only as being the A-reflection of ''B''). This is equivalent to saying that the embedding functor E\colon \mathbf \hookrightarrow \mathbf is a right adjoint. The left adjoint
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
R \colon \mathbf B \to \mathbf A is called the reflector. The map r_B is the unit of this adjunction. The reflector assigns to B the A-object A_B and Rf for a B-morphism f is determined by the commuting diagram : If all A-reflection arrows are (extremal) epimorphisms, then the subcategory A is said to be (extremal) epireflective. Similarly, it is bireflective if all reflection arrows are bimorphisms. All these notions are special case of the common generalization—E-reflective subcategory, where E is a
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
of morphisms. The E-reflective hull of a class A of objects is defined as the smallest E-reflective subcategory containing A. Thus we can speak about reflective hull, epireflective hull, extremal epireflective hull, etc. An anti-reflective subcategory is a full subcategory A such that the only objects of B that have an A-reflection arrow are those that are already in A. Dual notions to the above-mentioned notions are coreflection, coreflection arrow, (mono)coreflective subcategory, coreflective hull, anti-coreflective subcategory.


Examples


Algebra

* The
category of abelian groups In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab. Properties The zero object o ...
Ab is a reflective subcategory of the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
, Grp. The reflector is the functor that sends each group to its abelianization. In its turn, the category of groups is a reflective subcategory of the category of
inverse semigroup In group (mathematics), group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that and , i.e. a regular semigr ...
s. * Similarly, the category of commutative associative algebras is a reflective subcategory of all associative algebras, where the reflector is quotienting out by the commutator ideal. This is used in the construction of the symmetric algebra from the
tensor algebra In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra over a field, algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', ...
. * Dually, the category of anti-commutative associative algebras is a reflective subcategory of all associative algebras, where the reflector is quotienting out by the anti-commutator ideal. This is used in the construction of the
exterior algebra In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
from the tensor algebra. * The category of fields is a reflective subcategory of the category of
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
s (with
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
s as morphisms). The reflector is the functor that sends each integral domain to its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
. * The category of abelian torsion groups is a coreflective subcategory of the category of abelian groups. The coreflector is the functor sending each group to its
torsion subgroup In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group ...
. * The categories of
elementary abelian group In mathematics, specifically in group theory, an elementary abelian group is an abelian group in which all elements other than the identity have the same order. This common order must be a prime number, and the elementary abelian groups in whic ...
s, abelian ''p''-groups, and ''p''-groups are all reflective subcategories of the category of groups, and the kernels of the reflection maps are important objects of study; see focal subgroup theorem. * The
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
is a coreflective subcategory of the category of
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
s: the right adjoint maps a monoid to its
group of units In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the ele ...
.


Topology

* The category of
Kolmogorov space In topology and related branches of mathematics, a topological space ''X'' is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of ''X'', at least one of them has a neighborhood not containing th ...
s (T0 spaces) is a reflective subcategory of Top, the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again con ...
, and the Kolmogorov quotient is the reflector. *The category of
completely regular space In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a ...
s CReg is a reflective subcategory of Top. By taking Kolmogorov quotients, one sees that the subcategory of
Tychonoff space In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a ...
s is also reflective. *The category of all
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
s is a reflective subcategory of the category of all Tychonoff spaces (and of the category of all topological spaces). The reflector is given by the Stone–Čech compactification. *The category of all
complete metric space In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
s with uniformly continuous mappings is a reflective subcategory of the category of metric spaces. The reflector is the completion of a metric space on objects, and the extension by density on arrows. *The category of sheaves is a reflective subcategory of presheaves on a topological space. The reflector is sheafification, which assigns to a presheaf the sheaf of sections of the bundle of its germs. *The category Seq of sequential spaces is a coreflective subcategory of Top. The sequential coreflection of a topological space (X,\tau) is the space (X,\tau_), where the topology \tau_ is a finer topology than \tau consisting of all sequentially open sets in X (that is, complements of sequentially closed sets).


Functional analysis

*The category of
Banach spaces In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
is a reflective subcategory of the category of
normed space The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898. The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war p ...
s and bounded linear operators. The reflector is the norm completion functor.


Category theory

*For any Grothendieck site (''C'', ''J''), the
topos In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notio ...
of sheaves on (''C'', ''J'') is a reflective subcategory of the topos of presheaves on ''C'', with the special further property that the reflector functor is left exact. The reflector is the sheafification functor ''a'' : Presh(''C'') → Sh(''C'', ''J''), and the adjoint pair (''a'', ''i'') is an important example of a geometric morphism in topos theory.


Properties

* The components of the counit are
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
s. * If ''D'' is a reflective subcategory of ''C'', then the inclusion functor ''D'' → ''C'' creates all limits that are present in ''C''. * A reflective subcategory has all colimits that are present in the ambient category. * The monad induced by the reflector/localization adjunction is idempotent.


Notes


References

* * * * {{cite book, author=Mark V. Lawson, title=Inverse semigroups: the theory of partial symmetries, year=1998, publisher=World Scientific, isbn=978-981-02-3316-7 Adjoint functors