HOME

TheInfoList



OR:

In
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
and
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a reflection group is a
discrete group In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and ...
which is generated by a set of reflections of a finite-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. The symmetry group of a
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitive group action, transitively on its flag (geometry), flags, thus giving it the highest degree of symmetry. In particular, all its elements or -faces (for all , w ...
or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group. Reflection groups also include
Weyl group In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections t ...
s and crystallographic
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
s. While the
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
is generated by reflections (by the
Cartan–Dieudonné theorem In mathematics, the Cartan–Dieudonné theorem, named after Élie Cartan and Jean Dieudonné, establishes that every orthogonal transformation in an ''n''-dimension (vector space), dimensional symmetric bilinear space can be described as the funct ...
), it is a continuous group (indeed,
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
), not a discrete group, and is generally considered separately.


Definition

Let ''E'' be a finite-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. A finite reflection group is a subgroup of the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
of ''E'' which is generated by a set of orthogonal reflections across hyperplanes passing through the origin. An affine reflection group is a discrete subgroup of the
affine group In mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real nu ...
of ''E'' that is generated by a set of ''affine reflections'' of ''E'' (without the requirement that the reflection hyperplanes pass through the origin). The corresponding notions can be defined over other
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
, leading to
complex reflection group In mathematics, a complex reflection group is a Group (mathematics), finite group acting on a finite-dimensional vector space, finite-dimensional complex numbers, complex vector space that is generated by complex reflections: non-trivial elements t ...
s and analogues of reflection groups over a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
.


Examples


Two dimensions

In two dimensions, the finite reflection groups are the
dihedral group In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest example ...
s, which are generated by reflection in two lines that form an angle of 2\pi/n and correspond to the
Coxeter diagram Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated ...
I_2(n). Conversely, the cyclic point groups in two dimensions are not generated by reflections, nor contain any – they are subgroups of index 2 of a dihedral group. Infinite reflection groups include the frieze groups *\infty\infty and *22\infty and the
wallpaper group A wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetry, symmetries in the pattern. Such patterns occur frequently in architecture a ...
s **, *2222, *333, *442 and *632. If the angle between two lines is an irrational multiple of pi, the group generated by reflections in these lines is infinite and non-discrete, hence, it is not a reflection group.


Three dimensions

Finite reflection groups are the point groups ''Cnv'', ''Dnh'', and the
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
s of the five
Platonic solid In geometry, a Platonic solid is a Convex polytope, convex, regular polyhedron in three-dimensional space, three-dimensional Euclidean space. Being a regular polyhedron means that the face (geometry), faces are congruence (geometry), congruent (id ...
s. Dual regular polyhedra (cube and octahedron, as well as dodecahedron and icosahedron) give rise to isomorphic symmetry groups. The classification of finite reflection groups of R3 is an instance of the
ADE classification In mathematics, the ADE classification (originally ''A-D-E'' classifications) is a situation where certain kinds of objects are in correspondence with simply laced Dynkin diagrams. The question of giving a common origin to these classifications, r ...
.


Relation with Coxeter groups

A reflection group ''W'' admits a
presentation A presentation conveys information from a speaker to an audience. Presentations are typically demonstrations, introduction, lecture, or speech meant to inform, persuade, inspire, motivate, build goodwill, or present a new idea/product. Presenta ...
of a special kind discovered and studied by H. S. M. Coxeter. The reflections in the faces of a fixed fundamental "chamber" are generators ''r''''i'' of ''W'' of order 2. All relations between them formally follow from the relations : (r_i r_j)^ = 1, expressing the fact that the product of the reflections ''r''''i'' and ''r''''j'' in two hyperplanes ''H''''i'' and ''H''''j'' meeting at an angle \pi/c_ is a
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
by the angle 2\pi/c_ fixing the subspace ''H''''i'' ∩ ''H''''j'' of codimension 2. Thus, viewed as an abstract group, every reflection group is a
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
.


Finite fields

When working over finite fields, one defines a "reflection" as a map that fixes a hyperplane. Geometrically, this amounts to including shears in a hyperplane. Reflection groups over finite fields of characteristic not 2 were classified by .


Generalizations

Discrete
isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
s of more general
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s generated by reflections have also been considered. The most important class arises from Riemannian symmetric spaces of rank 1: the
n-sphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
''S''''n'', corresponding to finite reflection groups, the Euclidean space R''n'', corresponding to affine reflection groups, and the
hyperbolic space In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symme ...
''H''''n'', where the corresponding groups are called hyperbolic reflection groups. In two dimensions,
triangle group In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triang ...
s include reflection groups of all three kinds.


See also

* Hyperplane arrangement *
Chevalley–Shephard–Todd theorem In mathematics, the Chevalley–Shephard–Todd theorem in invariant theory of finite groups states that the ring of invariants of a finite group acting on a complex vector space is a polynomial ring if and only if the group is generated by pseud ...
* Reflection groups are related to
kaleidoscope A kaleidoscope () is an optical instrument with two or more reflecting surfaces (or mirrors) tilted to each other at an angle, so that one or more (parts of) objects on one end of these mirrors are shown as a symmetrical pattern when viewed fro ...
s. * Parabolic subgroup of a reflection group


References


Notes


Bibliography

* * * *


Textbooks

* * *


External links

* *{{eom, id=Reflection_group, title=Reflection group *