In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, ramification is 'branching out', in the way that the
square root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
function, for
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a
covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping.
In complex analysis

In
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
, the basic model can be taken as the ''z'' → ''z''
''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in
Riemann surface theory, of ramification of order ''n''. It occurs for example in the
Riemann–Hurwitz formula for the effect of mappings on the
genus
Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
.
In algebraic topology
In a covering map the
Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''
''n'' mapping shows this as a local pattern: if we exclude 0, looking at 0 < , ''z'', < 1 say, we have (from the
homotopy
In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. ...
point of view) the
circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
mapped to itself by the ''n''-th power map (Euler–Poincaré characteristic 0), but with the whole
disk the Euler–Poincaré characteristic is 1, ''n'' − 1 being the 'lost' points as the ''n'' sheets come together at ''z'' = 0.
In geometric terms, ramification is something that happens in ''codimension two'' (like
knot theory
In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, and
monodromy); since ''real'' codimension two is ''complex'' codimension one, the local complex example sets the pattern for higher-dimensional
complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
s. In complex analysis, sheets can't simply fold over along a line (one variable), or codimension one subspace in the general case. The ramification set (branch locus on the base, double point set above) will be two real dimensions lower than the ambient
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
, and so will not separate it into two 'sides', locally―there will be paths that trace round the branch locus, just as in the example. In
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
over any
field, by analogy, it also happens in algebraic codimension one.
In algebraic number theory
In algebraic extensions of the rational numbers
Ramification in
algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
means a prime ideal factoring in an extension so as to give some repeated prime ideal factors. Namely, let
be the
ring of integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
of an
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
, and
a
prime ideal of
. For a field extension
we can consider the
ring of integers
(which is the
integral closure of
in
), and the ideal
of
. This ideal may or may not be prime, but for finite