HOME

TheInfoList



OR:

RNA polymerase 1 (also known as Pol I) is, in higher
eukaryotes The eukaryotes ( ) constitute the domain of Eukaryota or Eukarya, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, seaweeds, and many unicellular organisms are eukaryotes. They constitute a major group of ...
, the
polymerase In biochemistry, a polymerase is an enzyme (Enzyme Commission number, EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by ...
that only transcribes
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
(but not 5S rRNA, which is synthesized by
RNA polymerase III In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose ex ...
), a type of RNA that accounts for over 50% of the total RNA synthesized in a cell.


Structure and function

Pol I is a 590 kDa enzyme that consists of 14
protein subunit In structural biology, a protein subunit is a polypeptide chain or single protein molecule that assembles (or "''coassembles''") with others to form a protein complex. Large assemblies of proteins such as viruses often use a small number of t ...
s (
polypeptides Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty ami ...
), and its
crystal structure In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat ...
in the yeast ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'' was solved at 2.8Å resolution in 2013. Twelve of its subunits have identical or related counterparts in
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a Protein complex, multiprotein complex that Transcription (biology), transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNA pol ...
(Pol II) and
RNA polymerase III In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose ex ...
(Pol III). The other two subunits are related to Pol II initiation factors and have structural homologues in Pol III.
Ribosomal DNA The ribosomal DNA (rDNA) consists of a group of ribosomal RNA encoding genes and related regulatory elements, and is widespread in similar configuration in all domains of life. The ribosomal DNA encodes the non-coding ribosomal RNA, integral struc ...
transcription is confined to the
nucleolus The nucleolus (; : nucleoli ) is the largest structure in the cell nucleus, nucleus of eukaryote, eukaryotic cell (biology), cells. It is best known as the site of ribosome biogenesis. The nucleolus also participates in the formation of signa ...
, where about 400 copies of the 42.9-kb rDNA gene are present, arranged as
tandem repeat In genetics, tandem repeats occur in DNA when a pattern of one or more nucleotides is repeated and the repetitions are directly adjacent to each other, e.g. ATTCG ATTCG ATTCG, in which the sequence ATTCG is repeated three times. Several protein ...
s in
nucleolus organizer region ] Nucleolus organizer regions (NORs) are chromosome, chromosomal regions crucial for the formation of the nucleolus. In humans, the NORs are located on the short arms of the acrocentric chromosomes 13, 14, 15, 21 and 22, the genes RNR1, RNR2, R ...
s. Each copy contains a ~13.3 kb sequence encoding the 18S ribosomal RNA, 18S, the 5.8S, and the 28S RNA molecules, interlaced with two
internal transcribed spacer Internal transcribed spacer (ITS) is the spacer DNA situated between the small-subunit ribosomal RNA (rRNA) and large-subunit rRNA genes in the chromosome or the corresponding transcribed region in the polycistronic rRNA precursor transcript. ...
s, ITS1 and ITS2, and flanked upstream by a 5' external transcribed spacer and a downstream 3' external transcribed spacer. These components are transcribed together to form the 45S pre-rRNA. The 45S pre-rRNA is then post-transcriptionally cleaved by C/D box and H/ACA box snoRNAs, removing the two spacers and resulting in the three rRNAs by a complex series of steps. The 5S ribosomal RNA is transcribed by Pol III. Because of the simplicity of Pol I transcription, it is the fastest-acting polymerase and contributes up to 60% of cellular transcription levels in exponentially growing cells. In ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'', the 5S rDNA has the unusual feature of lying inside the rDNA repeat. It is flanked by non-transcribed spacers NTS1 and NTS2, and is transcribed backwards by Pol III, separately from the rest of the rDNA.


Regulation of rRNA transcription

The rate of cell growth is directly dependent on the rate of protein synthesis, which is itself intricately linked to ribosome synthesis and rRNA transcription. Thus, intracellular signals must coordinate the synthesis of rRNA with that of other components of protein translation. Myc is known to bind to human ribosomal DNA in order to stimulate rRNA transcription by RNA polymerase I. Two specific mechanisms have been identified, ensuring proper control of rRNA synthesis and Pol I-mediated transcription. Given the large numbers of rDNA genes (several hundreds) available for transcription, the first mechanism involves adjustments in the number of genes being transcribed at a specific time. In mammalian cells, the number of active rDNA genes varies between cell types and level of differentiation. In general, as a cell becomes more differentiated, it requires less growth and, therefore, will have a decrease in rRNA synthesis and a decrease in rDNA genes being transcribed. When rRNA synthesis is stimulated, SL1 (selectivity factor 1) will bind to the promoters of rDNA genes that were previously silent, and recruit a pre-initiation complex to which Pol I will bind and start transcription of rRNA. Changes in rRNA transcription can also occur via changes in the rate of transcription. While the exact mechanism through which Pol I increases its rate of transcription is as yet unknown, evidence has shown that rRNA synthesis can increase or decrease without changes in the number of actively transcribed rDNA.


Transcription cycle

In the process of transcription (by any polymerase), there are three main stages: #Initiation: the construction of the RNA polymerase complex on the gene's promoter with the help of
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
#Elongation: the actual transcription of the majority of the gene into a corresponding RNA sequence #Termination: the cessation of RNA transcription and the disassembly of the RNA polymerase complex.


Initiation

Pol I requires no TATA box in the promoter, instead relying on an upstream control element (UCE) located between −200 and −107, and a core element located between −45 and +20. #The dimeric eukaryotic upstream binding factor ( UBF) binds the UCE and the core element. #UBF recruits and binds a protein complex called SL1 in humans (or TIF-IB in mouse), composed of the TATA-binding protein (TBP) and three TBP-associated factors (TAFs). #The UBF dimer contains several high-mobility-group boxes ( HMG-boxes) that introduce loops into the upstream region, allowing the UCE and the core elements to come into contact. # RRN3/TIF-IA is phosphorylated and binds Pol I. #Pol I binds to the UBF/SL1 complex via RRN3/TIF-IA, and transcription starts. Note that this process is variable in different organisms.


Elongation

As Pol I escapes and clears the promoter, UBF and SL1 remain-promoter bound, ready to recruit another Pol I. Indeed, each active rDNA gene can be transcribed multiple times simultaneously, as opposed to Pol II-transcribed genes, which associate with only one complex at a time. While elongation proceeds unimpeded in vitro, it is unclear at this point whether this process happens in a cell, given the presence of
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone, histone proteins and resembles thread wrapped around a bobbin, spool. The nucleosome ...
s. Pol I does seem to transcribe through nucleosomes, either bypassing or disrupting them, perhaps assisted by chromatin-remodeling activities. In addition, UBF might also act as positive feedback, enhancing Pol I elongation through an anti-repressor function. An additional factor, TIF-IC, can also stimulate the overall rate of transcription and suppress pausing of Pol I. As Pol I proceeds along the rDNA,
supercoil DNA supercoiling refers to the amount of twist in a particular DNA strand, which determines the amount of strain on it. A given strand may be "positively supercoiled" or "negatively supercoiled" (more or less tightly wound). The amount of a st ...
s form both ahead of and behind the complex. These are unwound by topoisomerase I or II at regular intervals, similar to what is seen in Pol II-mediated transcription. Elongation is likely to be interrupted at sites of DNA damage. Transcription-coupled repair occurs similarly to Pol II-transcribed genes and requires the presence of several DNA repair proteins, such as TFIIH, CSB, and XPG.


Termination

In higher eukaryotes, TTF-I binds and bends the termination site at the 3' end of the transcribed region. This will force Pol I to pause. TTF-I, with the help of transcript-release factor
PTRF Polymerase I and transcript release factor, also known as Cavin1, Cavin-1 or PTRF, is a protein which in humans is encoded by the ''PTRF'' gene. Function PTRF (Cavin1) has been shown to be crucial for caveola formation and function. Deformat ...
and a T-rich region, will induce Pol I into terminating transcription and dissociating from the DNA and the new transcript. Evidence suggests that termination might be rate-limiting in cases of high rRNA production. TTF-I and PTRF will then indirectly stimulate the reinitiation of transcription by Pol I at the same rDNA gene. In organisms such as budding yeast the process seems to be much more complicated and is still not completely elucidated.


Recombination hotspot

Recombination hotspots are
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
sequences that increase local recombination. The HOT1 sequence in yeast is one of the most well studied
mitotic Mitosis () is a part of the cell cycle in eukaryotic cells in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the t ...
recombination hotspots. The HOT1 sequence includes an RNA polymerase I transcription promoter. In a yeast mutant strain defective in RNA polymerase I the HOT1 activity in promoting recombination is abolished. The level of RNA polymerase I transcription activity that is dependent on the promoter in the HOT1 sequence appears to determine the level of nearby mitotic recombination.


See also

*
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template. Using the e ...
*
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a Protein complex, multiprotein complex that Transcription (biology), transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNA pol ...
*
RNA polymerase III In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose ex ...
* Selective factor 1


References

{{Portal bar, Biology, border=no EC 2.7.7 Gene expression Proteins