HOME

TheInfoList



OR:

RNA-binding proteins (often abbreviated as RBPs) are
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s that bind to the double or single stranded
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
in cells and participate in forming
ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating inter ...
complexes. RBPs contain various
structural motif In a chain-like biological molecule, such as a protein or nucleic acid, a structural motif is a common three-dimensional structure that appears in a variety of different, evolutionarily unrelated molecules. A structural motif does not have t ...
s, such as RNA recognition motif (RRM), dsRNA binding domain,
zinc finger A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) which stabilizes the fold. The term ''zinc finger'' was originally coined to describe the finger-like appearance of a ...
and others. They are
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
ic and
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics * Nuclear space *Nuclear ...
proteins. However, since most mature RNA is exported from the nucleus relatively quickly, most RBPs in the nucleus exist as complexes of protein and
pre-mRNA A primary transcript is the single-stranded ribonucleic acid (RNA) product synthesized by Transcription (genetics), transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs. The primary transcript ...
called
heterogeneous ribonucleoprotein particle Heterogeneous nuclear ribonucleoproteins (hnRNPs) are complexes of RNA and protein present in the cell nucleus during gene transcription and subsequent post-transcriptional modification of the newly synthesized RNA (pre-mRNA). The presence of the ...
s (hnRNPs). RBPs have crucial roles in various cellular processes such as: cellular function, transport and localization. They especially play a major role in post-transcriptional control of RNAs, such as: splicing,
polyadenylation Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In euka ...
,
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
stabilization, mRNA localization and
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
.
Eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
cells express diverse RBPs with unique RNA-binding activity and
protein–protein interaction Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and t ...
. According to the Eukaryotic RBP Database (EuRBPDB), there are 2961
genes In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
encoding RBPs in
humans Humans (''Homo sapiens'') or modern humans are the most common and widespread species of primate, and the last surviving species of the genus ''Homo''. They are Hominidae, great apes characterized by their Prehistory of nakedness and clothing ...
. During
evolution Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
, the diversity of RBPs greatly increased with the increase in the number of
introns An intron is any Nucleic acid sequence, nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of ...
. Diversity enabled eukaryotic cells to utilize RNA exons in various arrangements, giving rise to a unique RNP (ribonucleoprotein) for each RNA. Although RBPs have a crucial role in post-transcriptional regulation in gene expression, relatively few RBPs have been studied systematically. It has now become clear that RNA–RBP interactions play important roles in many biological processes among organisms.


Structure

Many RBPs have modular structures and are composed of multiple repeats of just a few specific basic domains that often have limited sequences. Different RBPs contain these sequences arranged in varying combinations. A specific protein's recognition of a specific RNA has evolved through the rearrangement of these few basic domains. Each basic domain recognizes RNA, but many of these proteins require multiple copies of one of the many common domains to function.


Diversity

As nuclear
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
emerges from
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template. Using the e ...
, RNA transcripts are immediately covered with RNA-binding proteins that regulate every aspect of RNA metabolism and function including RNA biogenesis, maturation, transport, cellular localization and stability. All RBPs bind RNA, however they do so with different RNA-sequence specificities and affinities, which allows the RBPs to be as diverse as their targets and functions. These targets include
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
, which codes for proteins, as well as a number of functional
non-coding RNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not Translation (genetics), translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally imp ...
s. NcRNAs almost always function as
ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating inter ...
complexes and not as naked RNAs. These non-coding RNAs include microRNAs,
small interfering RNA Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA, double-stranded non-coding RNA, non-coding RNA, RNA molecules, typically 20–24 base pairs in length, similar to microR ...
s (siRNA), as well as spliceosomal
small nuclear RNA Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the Cell nucleus#Splicing speckles, splicing speckles and Cajal body, Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approxi ...
s (snRNA).


Function


RNA processing and modification


Alternative splicing

Alternative splicing Alternative splicing, alternative RNA splicing, or differential splicing, is an alternative RNA splicing, splicing process during gene expression that allows a single gene to produce different splice variants. For example, some exons of a gene ma ...
is a mechanism by which different forms of mature mRNAs (messengers RNAs) are generated from the same
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. It is a regulatory mechanism by which variations in the incorporation of the
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequence ...
s into mRNA leads to the production of more than one related protein, thus expanding possible genomic outputs. RBPs function extensively in the regulation of this process. Some binding proteins such as neuronal specific RNA-binding proteins, namely NOVA1, control the alternative splicing of a subset of hnRNA by recognizing and binding to a specific sequence in the RNA (YCAY where Y indicates pyrimidine, U or C). These proteins then recruit splicesomal proteins to this target site. SR proteins are also well known for their role in alternative splicing through the recruitment of snRNPs that form the splicesome, namely U1 snRNP and U2AF snRNP. However, RBPs are also part of the splicesome itself. The splicesome is a complex of snRNA and protein subunits and acts as the mechanical agent that removes
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of the cistron .e., gen ...
s and ligates the flanking exons. Other than core splicesome complex, RBPs also bind to the sites of ''Cis''-acting RNA elements that influence exons inclusion or exclusion during splicing. These sites are referred to as exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers (ISEs) and intronic splicing silencers (ISSs) and depending on their location of binding, RBPs work as splicing silencers or enhancers.


RNA editing

The most extensively studied form of RNA editing involves the
ADAR Adar (Hebrew: , ; from Akkadian ''adaru'') is the sixth month of the civil year and the twelfth month of the religious year on the Hebrew calendar, roughly corresponding to the month of March in the Gregorian calendar. It is a month of 29 days. ...
protein. This protein functions through
post-transcriptional modification Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, f ...
of mRNA transcripts by changing the
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
content of the RNA. This is done through the conversion of
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9- glycosidic bond. Adenosine is one of the four nucleoside build ...
to inosine in an enzymatic reaction catalyzed by ADAR. This process effectively changes the RNA sequence from that encoded by the
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
and extends the diversity of the gene products. The majority of RNA editing occurs on non-coding regions of RNA; however, some protein-encoding RNA transcripts have been shown to be subject to editing resulting in a difference in their protein's amino acid sequence. An example of this is the glutamate receptor mRNA where glutamine is converted to arginine leading to a change in the functionality of the protein.


Polyadenylation

Polyadenylation Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In euka ...
is the addition of a "tail" of adenylate residues to an RNA transcript about 20 bases downstream of the AAUAAA sequence within the three prime untranslated region. Polyadenylation of mRNA has a strong effect on its
nuclear transport Nuclear transport refers to the mechanisms by which molecules move across the nuclear membrane of a cell. The entry and exit of large molecules from the cell nucleus is tightly controlled by the nuclear pore complexes (NPCs). Although small molecule ...
, translation efficiency, and stability. All of these as well as the process of polyadenylation depend on binding of specific RBPs. All eukaryotic mRNAs with few exceptions are processed to receive 3' poly (A) tails of about 200 nucleotides. One of the necessary protein complexes in this process is
CPSF Cleavage and polyadenylation specificity factor (CPSF) is involved in the Bond cleavage, cleavage of the 3' signaling region from a newly synthesized pre-messenger RNA (pre-mRNA) molecule in the process of transcription (genetics), gene transcript ...
. CPSF binds to the 3' tail (AAUAAA) sequence and together with another protein called poly(A)-binding protein, recruits and stimulates the activity of poly(A) polymerase. Poly(A) polymerase is inactive on its own and requires the binding of these other proteins to function properly.


Export

After processing is complete, mRNA needs to be transported from the
cell nucleus The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryote, eukaryotic cell (biology), cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have #Anucleated_cells, ...
to
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
. This is a three-step process involving the generation of a cargo-carrier complex in the nucleus followed by translocation of the complex through the
nuclear pore complex The nuclear pore complex (NPC), is a large protein complex giving rise to the nuclear pore. A great number of nuclear pores are studded throughout the nuclear envelope that surrounds the eukaryote cell nucleus. The pores enable the nuclear tra ...
and finally release of the cargo into cytoplasm. The carrier is then subsequently recycled. TAP/NXF1:p15 heterodimer is thought to be the key player in mRNA export. Over-expression of TAP in ''Xenopus laevis'' frogs increases the export of transcripts that are otherwise inefficiently exported. However TAP needs adaptor proteins because it is unable interact directly with mRNA. Aly/REF protein interacts and binds to the mRNA recruiting TAP.


mRNA localization

mRNA localization is critical for regulation of gene expression by allowing spatially regulated protein production. Through mRNA localization proteins are translated in their intended target site of the cell. This is especially important during early development when rapid cell cleavages give different cells various combinations of mRNA which can then lead to drastically different cell fates. RBPs are critical in the localization of this mRNA that insures proteins are only translated in their intended regions. One of these proteins is ZBP1. ZBP1 binds to beta-actin mRNA at the site of transcription and moves with mRNA into the cytoplasm. It then localizes this mRNA to the lamella region of several asymmetric cell types where it can then be translated. In 2008 it was proposed that FMRP was involved in the stimulus-induced localization of several dendritic mRNAs in the neuronal dendrites of cultured hippocampal neurons. More recent studies of FMRP-bound RNAs present in microdissected dendrites of CA1 hippocampal neurons revealed no changes in localization in wild type versus FMRP-null mouse brains.


Translation

Translational regulation provides a rapid mechanism to control gene expression. Rather than controlling gene expression at the transcriptional level, mRNA is already transcribed but the recruitment of ribosomes is controlled. This allows rapid generation of proteins when a signal activates translation. ZBP1 in addition to its role in the localization of B-actin mRNA is also involved in the translational repression of beta-actin mRNA by blocking translation initiation. ZBP1 must be removed from the mRNA to allow the ribosome to properly bind and translation to begin.


Protein–RNA interactions

RNA-binding proteins exhibit highly specific recognition of their RNA targets by recognizing their sequences, structures, motifs and RNA modifications. Specific binding of the RNA-binding proteins allow them to distinguish their targets and regulate a variety of cellular functions via control of the generation, maturation, and lifespan of the RNA transcript. This interaction begins during transcription as some RBPs remain bound to RNA until degradation whereas others only transiently bind to RNA to regulate
RNA splicing RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
, processing, transport, and localization.
Cross-linking immunoprecipitation Cross-linking and immunoprecipitation (CLIP, or CLIP-seq) is a method used in molecular biology that combines UV cross-link, crosslinking with immunoprecipitation in order to identify RNA binding sites of proteins on a transcriptome-wide scale, the ...
(CLIP) methods are used to stringently identify direct RNA binding sites of RNA-binding proteins in a variety of tissues and organisms. In this section, three classes of the most widely studied RNA-binding domains (RNA-recognition motif, double-stranded RNA-binding motif, zinc-finger motif) will be discussed.


RNA-recognition motif (RRM)

The RNA recognition motif, which is the most common RNA-binding motif, is a small protein domain of 75–85
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s that forms a four-stranded
β-sheet The beta sheet (β-sheet, also β-pleated sheet) is a common structural motif, motif of the regular protein secondary structure. Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone chain, backbon ...
against the two α-helices. This recognition motif exerts its role in numerous cellular functions, especially in mRNA/rRNA processing, splicing, translation regulation, RNA export, and RNA stability. Ten structures of an RRM have been identified through
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic f ...
and
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
. These structures illustrate the intricacy of protein–RNA recognition of RRM as it entails RNA–RNA and protein–protein interactions in addition to protein–RNA interactions. Despite their complexity, all ten structures have some common features. All RRMs' main protein surfaces' four-stranded β-sheet was found to interact with the RNA, which usually contacts two or three nucleotides in a specific manner. In addition, strong RNA binding affinity and specificity towards variation are achieved through an interaction between the inter-domain linker and the RNA and between RRMs themselves. This plasticity of the RRM explains why RRM is the most abundant domain and why it plays an important role in various biological functions.


Double-stranded RNA-binding motif

The double-stranded RNA-binding motif (dsRM, dsRBD), a 70–75 amino-acid domain, plays a critical role in RNA processing,
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
localization,
RNA interference RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by ...
, RNA editing, and translational repression. All three structures of the domain solved as of 2005 possess uniting features that explain how dsRMs only bind to dsRNA instead of dsDNA. The dsRMs were found to interact along the RNA duplex via both α-helices and β1-β2 loop. Moreover, all three dsRBM structures make contact with the sugar-phosphate backbone of the major groove and of one minor groove, which is mediated by the β1-β2 loop along with the
N-terminus The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the amin ...
region of the
alpha helix An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the Protein secondary structure, secondary structure of proteins. It is al ...
2. This interaction is a unique adaptation for the shape of an RNA double helix as it involves 2'-hydroxyls and phosphate oxygen. Despite the common structural features among dsRBMs, they exhibit distinct chemical frameworks, which permits specificity for a variety for RNA structures including stem-loops, internal loops, bulges or helices containing mismatches.


Zinc fingers

CCHH-type zinc-finger domains are the most common
DNA-binding domain A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence (a recognition sequence) or have a gener ...
within the eukaryotic
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
. In order to attain high sequence-specific recognition of DNA, several zinc fingers are utilized in a modular fashion. Zinc fingers exhibit ββα protein fold in which a β-hairpin and a α-helix are joined via a ion. Furthermore, the interaction between protein side-chains of the α-helix with the DNA bases in the major groove allows for the DNA-sequence-specific recognition. Despite its wide recognition of DNA, there has been recent discoveries that zinc fingers also have the ability to recognize RNA. In addition to CCHH zinc fingers, CCCH zinc fingers were recently discovered to employ sequence-specific recognition of single-stranded RNA through an interaction between intermolecular
hydrogen bond In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
s and Watson-Crick edges of the RNA bases. CCHH-type zinc fingers employ two methods of RNA binding. First, the zinc fingers exert non-specific interaction with the backbone of a
double helix In molecular biology, the term double helix refers to the structure formed by base pair, double-stranded molecules of nucleic acids such as DNA. The double Helix, helical structure of a nucleic acid complex arises as a consequence of its Nuclei ...
whereas the second mode allows zinc fingers to specifically recognize the individual bases that bulge out. Differing from the CCHH-type, the CCCH-type zinc finger displays another mode of RNA binding, in which single-stranded RNA is identified in a sequence-specific manner. Overall, zinc fingers can directly recognize DNA via binding to dsDNA sequence and RNA via binding to ssRNA sequence.


Role in embryonic development

RNA-binding proteins' transcriptional and
post-transcriptional regulation Post-transcriptional regulation is the control of gene expression at the RNA level. It occurs once the RNA polymerase has been attached to the gene's promoter and is synthesizing the nucleotide sequence. Therefore, as the name indicates, it occur ...
of RNA has a role in regulating the patterns of gene expression during development. Extensive research on the nematode ''C. elegans'' has identified RNA-binding proteins as essential factors during
germline In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes ( eggs and sperm), which can come together to form a zygote. They dif ...
and early embryonic development. Their specific function involves the development of somatic tissues (
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s,
hypodermis The subcutaneous tissue (), also called the hypodermis, hypoderm (), subcutis, or superficial fascia, is the lowermost layer of the integumentary system in vertebrates. The types of cells found in the layer are fibroblasts, adipose cells, and ...
,
muscles Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to muscle contra ...
and excretory cells) as well as providing timing cues for the developmental events. Nevertheless, it is exceptionally challenging to discover the mechanism behind RBPs' function in development due to the difficulty in identifying their RNA targets. This is because most RBPs usually have multiple RNA targets. However, it is indisputable that RBPs exert a critical control in regulating developmental pathways in a concerted manner.


Germline development

In ''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (an insect of the Order (biology), order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly" ...
'', Elav, Sxl and tra-2 are RNA-binding protein encoding genes that are critical in the early sex determination and the maintenance of the somatic sexual state. These
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
s impose effects on the post-transcriptional level by regulating sex-specific splicing in ''Drosophila''. Sxl exerts positive regulation of the feminizing gene ''tra'' to produce a functional tra mRNA in females. In ''C. elegans'', RNA-binding proteins including FOG-1, MOG-1/-4/-5 and RNP-4 regulate germline and somatic sex determination. Furthermore, several RBPs such as GLD-1, GLD-3, DAZ-1, PGL-1 and OMA-1/-2 exert their regulatory functions during meiotic
prophase Prophase () is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin retic ...
progression, gametogenesis, and oocyte maturation.


Somatic development

In addition to RBPs' functions in germline development, post-transcriptional control also plays a significant role in somatic development. Differing from RBPs that are involved in germline and early embryo development, RBPs functioning in somatic development regulate tissue-specific alternative splicing of the mRNA targets. For instance, MEC-8 and UNC-75 containing RRM domains localize to regions of hypodermis and nervous system, respectively. Furthermore, another RRM-containing RBP, EXC-7, is revealed to localize in embryonic excretory canal cells and throughout the nervous system during somatic development.


Neuronal development

ZBP1 was shown to regulate dendritogenesis (
dendrite A dendrite (from Ancient Greek language, Greek δένδρον ''déndron'', "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the neurotransmission, electrochemical stimulation received from oth ...
formation) in hippocampal neurons. Other RNA-binding proteins involved in dendrite formation are Pumilio and Nanos, FMRP, CPEB and Staufen 1


Role in cancer

RBPs are emerging to play a crucial role in tumor development. Hundreds of RBPs are markedly dysregulated across human cancers and showed predominant downregulation in tumors related to normal tissues. Many RBPs are differentially expressed in different cancer types for example KHDRBS1(Sam68), ELAVL1(HuR), FXR1 and UHMK1. For some RBPs, the change in expression are related with Copy Number Variations (CNV), for example CNV gains of BYSL in colorectal cancer cells and ESRP1, CELF3 in breast cancer, RBM24 in liver cancer, IGF2BP2, IGF2BP3 in lung cancer or CNV losses of KHDRBS2 in lung cancer. Some expression changes are cause due to protein affecting mutations on these RBPs for example NSUN6, ZC3H13, ELAC1,
RBMS3 RNA-binding motif, single-stranded-interacting protein 3 is a protein that in humans is encoded by the ''RBMS3'' gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequen ...
, and ZGPAT, SF3B1, SRSF2, RBM10, U2AF1, SF3B1, PPRC1, RBMXL1, HNRNPCL1 etc. Several studies have related this change in expression of RBPs to aberrant alternative splicing in cancer.


Current research

As RNA-binding proteins exert significant control over numerous cellular functions, they have been a popular area of investigation for many researchers. Due to its importance in the biological field, numerous discoveries regarding RNA-binding proteins' potentials have been recently unveiled. Recent development in experimental identification of RNA-binding proteins has extended the number of RNA-binding proteins significantly RNA-binding protein Sam68 controls the spatial and temporal compartmentalization of RNA
metabolism Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
to attain proper synaptic function in
dendrite A dendrite (from Ancient Greek language, Greek δένδρον ''déndron'', "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the neurotransmission, electrochemical stimulation received from oth ...
s. Loss of Sam68 results in abnormal posttranscriptional regulation and ultimately leads to
neurological disorder Neurological disorders represent a complex array of medical conditions that fundamentally disrupt the functioning of the nervous system. These disorders affect the brain, spinal cord, and nerve networks, presenting unique diagnosis, treatment, and ...
s such as fragile X-associated tremor/ataxia syndrome. Sam68 was found to interact with the mRNA encoding
β-actin Actin beta (HUGO Gene Nomenclature Committee abbreviation ''ACTB''/ACTB) is one of six different actin isoforms which have been identified in humans. This is one of the two nonmuscle cytoskeletal actins. Actins are highly conserved proteins that ...
, which regulates the synaptic formation of the dendritic spines with its
cytoskeletal The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all Cell (biology), cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane ...
components. Therefore, Sam68 plays a critical role in regulating synapse number via control of postsynaptic β-actin mRNA metabolism. Neuron-specific CELF family RNA-binding protein UNC-75 specifically binds to the UUGUUGUGUUGU mRNA stretch via its three RNA recognition motifs for the exon 7a selection in ''C. elegans neuronal cells. As exon 7a is skipped due to its weak splice sites in non-neuronal cells, UNC-75 was found to specifically activate splicing between exon 7a and exon 8 only in the neuronal cells. The cold inducible RNA binding protein CIRBP plays a role in controlling the cellular response upon confronting a variety of cellular stresses, including short wavelength
ultraviolet light Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of th ...
, hypoxia, and
hypothermia Hypothermia is defined as a body core temperature below in humans. Symptoms depend on the temperature. In mild hypothermia, there is shivering and mental confusion. In moderate hypothermia, shivering stops and confusion increases. In severe ...
. This research yielded potential implications for the association of disease states with inflammation. Serine-arginine family of RNA-binding protein Slr1 was found exert control on the polarized growth in Candida albicans. Slr1 mutations in mice results in decreased filamentation and reduces damage to
epithelial Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
and
endothelial cell The endothelium (: endothelia) is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and th ...
s that leads to extended survival rate compared to the Slr1 wild-type strains. Therefore, this research reveals that SR-like protein Slr1 plays a role in instigating the hyphal formation and virulence in ''C. albicans''.


See also

* DNA-binding protein * RNA-binding protein database *
Ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating inter ...


External links


starBase platform
a platform for decoding binding sites of RNA binding proteins (RBPs) from large-scale CLIP-Seq (HITS-CLIP, PAR-CLIP, iCLIP, CLASH) datasets.
RBPDB database
a database of RNA binding proteins.
oRNAment
a database of putative RBP binding site instances in both coding and non-coding RNA in various species.
ATtRACt database
a database of RNA binding proteins and associated motifs. * SplicedAid-F: a database of hand -cureted human RNA binding proteins database.
RsiteDB
RNA binding site database
SPOT-Seq-RNA
Template-based prediction of RNA binding proteins and their complex structures.
SPOT-Struct-RNA
RNA binding proteins prediction from 3D structures.
ENCODE Project
A collection of genomic datasets (i.e. RNA Bind-n-seq, eCLIP, RBP targeted shRNA RNA-seq) for RBPs
RBP Image Database
Images showing the cellular localization of RBPs in cells
RBPSpot Software
A Deep-Learning based highly accurate software to detect RBP-RNA interaction. It also provides a module to build new RBP-RNA interaction models.


References

{{Ribonucleoproteins Cell biology