Protoplanetary Nebulae
   HOME

TheInfoList



OR:

A protoplanetary nebula or preplanetary nebula (PPN, plural PPNe) is an
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
which is at the short-lived episode during a
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
's rapid
evolution Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
between the late
asymptotic giant branch The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
(LAGB) phase and the subsequent
planetary nebula A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...
(PN) phase. A PPN emits strongly in
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
radiation, and is a kind of
reflection nebula In astronomy, reflection nebulae are interstellar cloud, clouds of Cosmic dust, interstellar dust which might reflect the light of a nearby star or stars. The energy from the nearby stars is insufficient to Ionization, ionize the gas of the nebu ...
. It is the second-from-the-last high-luminosity evolution phase in the life cycle of intermediate-mass stars (1–8 ).


Naming

The name protoplanetary nebula is an unfortunate choice due to the possibility of confusion with the same term being sometimes employed when discussing the unrelated concept of
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are sim ...
s. The name protoplanetary nebula is a consequence of the older term planetary nebula, which was chosen due to early astronomers looking through telescopes and finding a similarity in appearance of planetary nebula to the gas giants such as
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
and
Uranus Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
. To avoid any possible confusion, suggested employing a new term preplanetary nebula which does not overlap with any other disciplines of astronomy. They are often referred to as post-AGB stars, although that category also includes stars that will never ionize their ejected matter.


Evolution


Beginning

During the late
asymptotic giant branch The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
(LAGB) phase, when mass loss reduces the hydrogen envelope's mass to around 10−2  for a core mass of 0.60 , a star will begin to evolve towards the blue side of the
Hertzsprung–Russell diagram The Hertzsprung–Russell diagram (abbreviated as H–R diagram, HR diagram or HRD) is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosities and their stellar classifications or effective temp ...
. When the hydrogen envelope has been further reduced to around 10−3 , the envelope will have been so disrupted that it is believed further significant mass loss is not possible. At this point, the
effective temperature The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
of the star, ''T''*, will be around 5,000  K and it is defined to be the end of the LAGB and the beginning of the PPN.


Protoplanetary nebula phase

During the ensuing protoplanetary nebula phase, the central star's
effective temperature The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
will continue rising as a result of the envelope's mass loss as a consequence of the hydrogen shell's burning. During this phase, the central star is still too cool to ionize the slow-moving circumstellar shell ejected during the preceding AGB phase. However, the star does appear to drive high-velocity, collimated
winds Wind is the natural movement of atmosphere of Earth, air or other gases relative to a planetary surface, planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heatin ...
which shape and shock this shell, and almost certainly entrain slow-moving AGB ejecta to produce a fast molecular wind. Observations and high-resolution imaging studies from 1998 to 2001, demonstrate that the rapidly evolving PPN phase ultimately shapes the morphology of the subsequent PN. At a point during or soon after the AGB envelope detachment, the envelope shape changes from roughly spherically symmetric to axially symmetric. The resultant morphologies are bipolar, knotty jets and Herbig–Haro-like "bow shocks". These shapes appear even in relatively "young" PPNe.


End

The PPN phase continues until the central star reaches around 30,000 K and it is hot enough (producing enough
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
radiation) to ionize the circumstellar nebula (ejected gases) and it becomes a kind of
emission nebula An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission n ...
called a Planetary Nebula. This transition must take place in less than around 10,000 years or else the density of the
circumstellar envelope A circumstellar envelope (CSE) is a part of a star that has a roughly spherical shape and is not gravitationally bound to the star core. Usually circumstellar envelopes are formed from the dense stellar wind, or they are present before the formati ...
will fall below the PN formulation density threshold of around 100 per cm3 and no PN will result, such a case is sometimes referred to as a 'lazy planetary nebula'.


Recent conjectures

Bujarrabal et al. (2001) found that the "interacting
stellar wind A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
s" model of Kwok et al. (1978) of radiatively-driven winds is insufficient to account for their CO observations of PPN fast winds which imply high momentum and energy inconsistent with that model. Complementarily, theorists (Soker & Livio 1994; Reyes-Ruiz & Lopez 1999; Soker & Rappaport 2000; Blackman, Frank & Welch 2001) investigated whether
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and ...
scenarios, similar to models used to explain jets from
active galactic nuclei An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such e ...
and
young star A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope o ...
s, could account for both the point symmetry and the high degree of collimation seen in many PPN jets. In such models applied to the PPN context, the accretion disk forms through binary interactions. Magneto-centrifugal launching from the disk surface is then a way to convert gravitational energy into the kinetic energy of a fast wind in these systems. If the accretion-disk jet paradigm is correct and magneto-hydrodynamics (MHD) processes mediate the energetics and collimation of PPN outflows, then they will also determine physics of the shocks in these flows, and this can be confirmed with high-resolution pictures of the emission regions that go with the shocks.


See also

*
Bipolar nebula A bipolar nebula is a type of nebula characterized by two lobes either side of a central star. About 10–20% of planetary nebulae are bipolar. Formation Though the exact causes of this nebular structure are not known, it is often thought to im ...
*
Bipolar outflow A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae). Protostars I ...
* List of protoplanetary nebulae *
Planetary nebula A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...


Notes

  1. The late asymptotic giant branch begins at the point on the asymptotic giant branch (AGB) where a star is no longer observable in
    visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
    and becomes an
    infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
    object.


References

* * . * . {{DEFAULTSORT:Protoplanetary Nebula Nebulae Stellar evolution