HOME

TheInfoList



OR:

Protochlorophyllide,KEGG compound database entr

/ref> or monovinyl protochlorophyllide, is an intermediate in the
biosynthesis Biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. ...
of chlorophyll ''a''. It lacks the phytol side-chain of chlorophyll and the reduced
pyrrole Pyrrole is a heterocyclic aromatic organic compound, a five-membered ring with the formula C4 H4 NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., ''N''-meth ...
in ring D. Protochlorophyllide is highly fluorescent; mutants that accumulate it glow red if irradiated with blue light.Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(22):12826-3
pdf
In angiosperms, the later steps which convert protochlorophyllide to chlorophyll are light-dependent, and such plants are pale ( chlorotic) if grown in the darkness.
Gymnosperms The gymnosperms ( lit. revealed seeds) are a group of seed-producing plants that includes conifers, cycads, ''Ginkgo'', and gnetophytes, forming the clade Gymnospermae. The term ''gymnosperm'' comes from the composite word in el, γυμνό� ...
,
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular mic ...
, and photosynthetic bacteria have another, light-independent enzyme and grow green in the darkness as well.


Conversion to chlorophyll

The enzyme that converts protochlorophyllide to chlorophyllide ''a'', the next intermediate on the biosynthetic pathway, is
protochlorophyllide reductase In enzymology, protochlorophyllide reductases (POR) are enzymes that catalyze the conversion from protochlorophyllide to chlorophyllide ''a''. They are oxidoreductases participating in the biosynthetic pathway to chlorophylls. There are two s ...
,KEGG enzyme entry 1.3.1.3

/ref> Enzyme Commission number, EC 1.3.1.33. There are two structurally unrelated proteins with this activity: the light-dependent and the dark-operative. The light-dependent reductase needs light to operate. The dark-operative version is a completely different protein, consisting of three subunits that exhibit significant sequence similarity to the three subunits of nitrogenase, which catalyzes the formation of ammonia from dinitrogen. This enzyme might be evolutionary older but (being similar to nitrogenase) is highly sensitive to free oxygen and does not work if its concentration exceeds about 3%. Hence, the alternative, light-dependent version needed to evolve. Most of the photosynthetic bacteria have both light-dependent and light-independent reductases. Angiosperms have lost the dark-operative form and rely on 3 slightly different copies of light-dependent version, frequently abbreviated as POR A, B, and C. Gymnosperms have much more copies of the similar gene ( Loblolly pine has about 1
Loblolly Pine (Pinus taeda L.) Contains Multiple Expressed Genes Encoding Light-Dependent NADPH:Protochlorophyllide Oxidoreductase (POR)
. In plants, POR is encoded in the
cell nucleus The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
and only later transported to its place of work,
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
. Unlike with POR, in plants and algae that have the dark-operative enzyme it is at least partially encoded in the chloroplast genome.


Potential danger for plant

Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, however, occurs mostly in the free form and, under light conditions, acts as a photosensitizer, forming highly toxic free radicals. Hence, plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of δ-aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthetic pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, as do mutants with a disrupted regulatory system. ''Arabidopsis'' ''FLU'' mutant with damaged regulation can survive only either in a continuous darkness (protochlorophyllide is not dangerous in the darkness) or under continuous light, when the plant is capable to convert all produced protochlorophyllide into chlorophyll and do not overaccumulate it despite of the lack of regulation. In barley ''Tigrina'' mutant (mutated on the same gene,) light kills the majority of the leaf tissue that has developed in the darkness, but part of the leaf that originated during the day survives. As a result, the leaves are covered by white stripes of necrotic regions, and the number of the white stripes is close to the age of the leaf in days. Green regions survive the subsequent nights, likely because the synthesis of chlorophyll in the mature leaf tissue is greatly reduced anyway.


Biosynthesis regulatory protein FLU

In spite of numerous past attempts to find the mutant that overacumulates protochlorophyllide under usual conditions, only one such gene (''flu'') is currently (2009) known. ''Flu'' (first described in ) is a nuclear-encoded, chloroplast-located protein that appears containing only protein-protein interaction sites. It is currently not known which other proteins interact through this linker. The regulatory protein is a transmembrane protein that is located in the thylakoid membrane. Later, it was discovered that ''Tigrina'' mutants in barley, known a long time ago, are also mutated in the same gene. It is not obvious why no mutants of any other gene were observed; maybe mutations in other proteins, involved into the regulatory chain, are fatal. ''Flu'' is a single gene, not a member of the
gene family A gene family is a set of several similar genes, formed by duplication of a single original gene, and generally with similar biochemical functions. One such family are the genes for human hemoglobin subunits; the ten genes are in two clusters on ...
. Later, by the sequence similarity, a similar protein was found in ''
Chlamydomonas ''Chlamydomonas'' is a genus of green algae consisting of about 150 speciesSmith, G.M. 1955 ''Cryptogamic Botany Volume 1. Algae and Fungi'' McGraw-Hill Book Company Inc of unicellular flagellates, found in stagnant water and on damp soil, ...
'' algae,A Falciatore, L Merendino, F Barneche, M Ceol, R Meskauskiene, K Apel, JD Rochaix (2005). The FLP proteins act as regulators of chlorophyll synthesis in response to light and plastid signals in ''Chlamydomonas''. Genes & Dev, 19:176-187

showing that this regulatory subsystem existed a long time before the angiosperms lost the independent conversion enzyme. In a different manner, the ''Chlamydomonas'' regulatory protein is more complex: It is larger, crosses the thylakoid membrane twice rather than once, contains more protein-protein interactions sites, and even undergoes alternative RNA splicing, splicing. It appears that the regulatory system underwent simplification during evolution.


References

{{tetrapyrroles Porphyrins Plant physiology