The probability of
success (POS) is a statistics concept commonly used in the
pharmaceutical industry
The pharmaceutical industry is a medical industry that discovers, develops, produces, and markets pharmaceutical goods such as medications and medical devices. Medications are then administered to (or self-administered by) patients for curing ...
including by
health authorities to support
decision making
In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be either ra ...
.
The probability of success is a concept closely related to conditional power and
predictive power. Conditional power is the probability of observing statistical significance given the observed data assuming the treatment effect parameter equals a specific value. Conditional power is often criticized for this assumption. If we know the exact value of the treatment effect, there is no need to do the experiment. To address this issue, we can consider conditional power in a
Bayesian setting by considering the treatment effect parameter to be a
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
. Taking the
expected value
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
of the conditional power with respect to the
posterior distribution
The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior ...
of the parameter gives the predictive power. Predictive power can also be calculated in a
frequentist setting. No matter how it is calculated, predictive power is a random variable since it is a
conditional probability
In probability theory, conditional probability is a measure of the probability of an Event (probability theory), event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. This ...
conditioned on randomly observed data. Both conditional power and predictive power use
statistical significance
In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by \alpha, is the ...
as the success criterion. However, statistical significance is often not sufficient to define success. For example, a
health authority
Between 1996 and 2002, the National Health Service in England and Wales was organised under health authorities (HAs). There were 95 HAs at the time of their abolition in England in 2002, and they reported to the eight regional offices of the NHS ...
often requires the magnitude of the treatment effect to be bigger than an effect which is merely statistically significant in order to support successful registration. In order to address this issue, we can extend conditional power and predictive power to the concept of probability of success. For probability of success, the success criterion is not restricted to statistical significance. It can be something else such as a clinical meaningful result.
Types of POS
* Conditional probability of success (CPOS): It is the probability of observing success (in terms of the observed result) in the future given the observed data and the treatment effect equaling a specific value. CPOS is an extension of conditional power. Its success criteria are not restricted to statistical significance. However when the success is defined as statistical significance, it becomes conditional power.
*
Predictive probability of success (PPOS): It is the probability of observing success in the future given the observed data. PPOS is an extension of predictive power. Its success criteria are not restricted to statistical significance. However when the success is defined as statistical significance, it becomes predictive power. Note that PPOS is a conditional probability conditioned on randomly observed data. Hence it is a random variable.
*
Posterior probability
The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posteri ...
of success (OPOS): It is the probability of success (in terms of the treatment effect parameter) calculated using
posterior probability
The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posteri ...
. Note that OPOS is a conditional probability conditioned on randomly observed data. Hence it is a random variable.
Application in clinical trials design
Pilot trial design using PPOS
Traditional pilot trial design is typically done by controlling
type I error
Type I error, or a false positive, is the erroneous rejection of a true null hypothesis in statistical hypothesis testing. A type II error, or a false negative, is the erroneous failure in bringing about appropriate rejection of a false null hy ...
rate and power for detecting a specific parameter value. The goal of a pilot trial such as a phase II trial is usually not to support registration. Therefore it doesn't make sense to control type I error rate, especially a big type I error, as typically done in a phase II trial. A pilot trial usually provides evidence to support a Go/No Go decision for a confirmatory trial. Therefore it makes more sense to design a trial based on PPOS. To support a No/Go decision, traditional methods require the PPOS to be small. However the PPOS can be small just due to chance. To solve this issue, we can require the PPOS credible interval to be tight such that the PPOS calculation is supported by sufficient information and hence PPOS is not small just due to chance. Finding an
optimal design is equivalent to find the solution to the following 2 equations.
# PPOS=PPOS1
# upper bound of PPOS credible interval=PPOS2
where PPOS1 and PPOS2 are some user-defined cutoff values. The first equation ensures that the PPOS is small such that not too many trials will be prevented entering next stage, to guard against
false negatives. The first equation also ensures that the PPOS is not too small such that not too many trials will enter the next stage, to guard against
false positive
A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test resu ...
s. The second equation ensures that the PPOS
credible interval is tight such that the PPOS calculation is supported by sufficient information. The second equation also ensures that the PPOS
credible interval is not too tight such that it won't demand too many resources.
Futility interim design using PPOS
Traditional futility interim is designed based on beta spending. However beta spending doesn't have an intuitive interpretation. Therefore it is difficult to communicate to non-statistician colleagues. Since PPOS has an intuitive interpretation, it makes more sense to design futility interim using PPOS. To declare futility, we mandate the PPOS to be small and PPOS calculation to be supported by sufficient information. According to Tang, 2015 finding the optimal design is equivalent to solving the following 2 equations.
# PPOS=PPOS1
# upper bound of PPOS credible interval=PPOS2
Defensive efficacy interim design using CPOS
Traditional efficacy interim is designed based on spending functions. Since spending functions don't have an intuitive interpretation, it is difficult to communicate to non-statistician colleagues. In contrast probability of success has an intuitive interpretation and hence can facilitate communication with non-statistician colleagues. Tang (2016)
proposes the use of the following criteria to support efficacy interim decision making:
mCPOS>c1
lCPOS>c2
where mCPOS is the median of CPOS with respect to the distribution of the parameter and lCPOS is the lower bound of the credible interval of CPOS. The first criterion ensures that the probability of success is large. The second criterion ensures that the credible interval of CPOS is tight; the CPOS calculation is supported by enough information; hence the probability of success is not large by chance.
Finding the optimal design is equivalent to finding the solution to the following equations:
# mCPOS=c1
# lCPOS=c2
See also
*
Credible interval
*
Posterior probability
The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posteri ...
*
Interim analysis
References
{{Reflist
Pharmaceutical statistics