Credible Interval
In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability \gamma to fall within it. For example, in an experiment that determines the distribution of possible values of the parameter \mu, if the probability that \mu lies between 35 and 45 is \gamma=0.95, then 35 \le \mu \le 45 is a 95% credible interval. Credible intervals are typically used to characterize posterior probability distributions or predictive probability distributions. Their generalization to disconnected or multivariate sets is called credible set or credible region. Credible intervals are a Bayesian analog to confidence intervals in frequentist statistics. The two concepts arise from different philosophies: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random varia ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Mean (statistics)
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statistics. Each attempts to summarize or typify a given group of data, illustrating the magnitude and sign of the data set. Which of these measures is most illuminating depends on what is being measured, and on context and purpose. The ''arithmetic mean'', also known as "arithmetic average", is the sum of the values divided by the number of values. The arithmetic mean of a set of numbers ''x''1, ''x''2, ..., x''n'' is typically denoted using an overhead bar, \bar. If the numbers are from observing a sample of a larger group, the arithmetic mean is termed the ''sample mean'' (\bar) to distinguish it from the group mean (or expected value) of the underlying distribution, denoted \mu or \mu_x. Outside probability and statistics, a wide range of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Jeffreys' Prior
In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys, its density function is proportional to the square root of the determinant of the Fisher information matrix: p\left( \theta \right) \propto \left, I (\theta) \^ .\, It has the key feature that it is invariant under a change of coordinates for the parameter vector \theta. That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior. This makes it of special interest for use with ''scale parameters''. As a concrete example, a Bernoulli distribution can be parameterized by the probability of occurrence , or by the odds . A uniform prior on one of these is not the same as a uniform prior on the other, even accounting for reparameterization in the usual way, but the Jeffreys prior on one reparameterizes to the Jeffreys pri ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Scale Parameter
In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution. Definition If a family of probability distributions is such that there is a parameter ''s'' (and other parameters ''θ'') for which the cumulative distribution function satisfies :F(x;s,\theta) = F(x/s;1,\theta), \! then ''s'' is called a scale parameter, since its value determines the " scale" or statistical dispersion of the probability distribution. If ''s'' is large, then the distribution will be more spread out; if ''s'' is small then it will be more concentrated. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only) satisfies :f_s(x) = f(x/s)/s, \! where ''f'' is the density of a standardized version of the density, i.e. f(x) \equiv f_(x). An estimator of a scale ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Location Parameter
In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter x_0, which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways: * either as having a probability density function or probability mass function f(x - x_0); or * having a cumulative distribution function F(x - x_0); or * being defined as resulting from the random variable transformation x_0 + X, where X is a random variable with a certain, possibly unknown, distribution. See also . A direct example of a location parameter is the parameter \mu of the normal distribution. To see this, note that the probability density function f(x , \mu, \sigma) of a normal distribution \mathcal(\mu,\sigma^2) can have the parameter \mu factored out and be written as: : g(x' = x - \mu , \sigma) = \frac \exp\left(-\f ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Sufficient Statistic
In statistics, sufficiency is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters. It is closely related to the concepts of an ancillary statistic which contains no information about the model parameters, and of a complete statistic which only contains information about the parameters and no ancillary information. A related concept is that of linear sufficiency, which is weaker than ''sufficiency'' but can be applied in some cases where there is no sufficient statistic, although it is restricted to linear estimators. The Kolmogorov structure function deals with individual finite data; the related notion there is the algorithmic sufficient statistic. The concept is due to Sir Ronald Fisher in 1920. Stephen Stigler noted in 1973 that the concept of sufficiency had fallen out of favor in descriptive statistics because of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Nuisance Parameter
In statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution, a member of the location–scale family. For at least one normal distribution, the variance(s), ''σ2'' is often not specified or known, but one desires to hypothesis test on the mean(s). Another example might be linear regression with unknown variance in the explanatory variable (the independent variable): its variance is a nuisance parameter that must be accounted for to derive an accurate interval estimate of the regression slope, calculate p-values, hypothesis test on the slope's value; see regression dilution. Nuisance parameters are often scale parameters, but not always; for example in errors-in-variables models, the unknown true location of each observation is a nuisance parameter. A parameter may also cease to be a " ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Markov Chain Monte Carlo
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's Discrete-time Markov chain#Stationary distributions, equilibrium distribution matches the target distribution. The more steps that are included, the more closely the distribution of the sample matches the actual desired distribution. Markov chain Monte Carlo methods are used to study probability distributions that are too complex or too highly N-dimensional space, dimensional to study with analytic techniques alone. Various algorithms exist for constructing such Markov chains, including the Metropolis–Hastings algorithm. General explanation Markov chain Monte Carlo methods create samples from a continuous random variable, with probability density proportional to a known function. These samples can be used to e ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Geometric Median
In geometry, the geometric median of a discrete point set in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances or absolute differences for one-dimensional data. It is also known as the spatial median, Euclidean minisum point, Torricelli point, or 1-median. It provides a measure of central tendency in higher dimensions and it is a standard problem in facility location, i.e., locating a facility to minimize the cost of transportation. The geometric median is an important estimator of location in statistics, because it minimizes the sum of the ''L''2 distances of the samples. It is to be compared to the mean, which minimizes the sum of the ''squared'' ''L''2 distances; and to the coordinate-wise median which minimizes the sum of the ''L''1 distances. The more general ''k''-median problem asks for the location of ''k'' cluster centers minimizing the sum o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Median
The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as the “middle" value. The basic feature of the median in describing data compared to the mean (often simply described as the "average") is that it is not skewed by a small proportion of extremely large or small values, and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of the income distribution because increases in the largest incomes alone have no effect on the median. For this reason, the median is of central importance in robust statistics. Median is a 2-quantile; it is the value that partitions a set into two equal parts. Finite set of numbers The median of a finite list of numbers is the "middle" number, when those numbers are listed in order from smallest to greatest. If the data set has an odd numbe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Mean
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statistics. Each attempts to summarize or typify a given group of data, illustrating the magnitude and sign of the data set. Which of these measures is most illuminating depends on what is being measured, and on context and purpose. The ''arithmetic mean'', also known as "arithmetic average", is the sum of the values divided by the number of values. The arithmetic mean of a set of numbers ''x''1, ''x''2, ..., x''n'' is typically denoted using an overhead bar, \bar. If the numbers are from observing a sample of a larger group, the arithmetic mean is termed the '' sample mean'' (\bar) to distinguish it from the group mean (or expected value) of the underlying distribution, denoted \mu or \mu_x. Outside probability and statistics, a wide rang ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Mode (statistics)
In statistics, the mode is the value that appears most often in a set of data values. If is a discrete random variable, the mode is the value at which the probability mass function takes its maximum value (i.e., ). In other words, it is the value that is most likely to be sampled. Like the statistical mean and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a population. The numerical value of the mode is the same as that of the mean and median in a normal distribution, and it may be very different in highly skewed distributions. The mode is not necessarily unique in a given discrete distribution since the probability mass function may take the same maximum value at several points , , etc. The most extreme case occurs in uniform distributions, where all values occur equally frequently. A mode of a continuous probability distribution is often considered to be any value at which its probability density fun ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |