In
probability theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
and
statistics, a scale parameter is a special kind of
numerical parameter
In statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exa ...
of a
parametric family
In mathematics and its applications, a parametric family or a parameterized family is a family of objects (a set of related objects) whose differences depend only on the chosen values for a set of parameters.
Common examples are parametrized (fa ...
of
probability distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomeno ...
s. The larger the scale parameter, the more spread out the distribution.
Definition
If a family of
probability distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomeno ...
s is such that there is a parameter ''s'' (and other parameters ''θ'') for which the
cumulative distribution function
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x.
Ev ...
satisfies
:
then ''s'' is called a scale parameter, since its value determines the "
scale
Scale or scales may refer to:
Mathematics
* Scale (descriptive set theory), an object defined on a set of points
* Scale (ratio), the ratio of a linear dimension of a model to the corresponding dimension of the original
* Scale factor, a number ...
" or
statistical dispersion
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartil ...
of the probability distribution. If ''s'' is large, then the distribution will be more spread out; if ''s'' is small then it will be more concentrated.

If the
probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only) satisfies
:
where ''f'' is the density of a standardized version of the density, i.e.
.
An
estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the ...
of a scale parameter is called an estimator of scale.
Families with Location Parameters
In the case where a parametrized family has a
location parameter
In geography, location or place are used to denote a region (point, line, or area) on Earth's surface or elsewhere. The term ''location'' generally implies a higher degree of certainty than ''place'', the latter often indicating an entity with an ...
, a slightly different definition is often used as follows. If we denote the location parameter by
, and the scale parameter by
, then we require that
where
is the cmd for the parametrized family. This modification is necessary in order for the standard deviation of a non-central Gaussian to be a scale parameter, since otherwise the mean would change when we rescale
. However, this alternative definition is not consistently used.
Simple manipulations
We can write
in terms of
, as follows:
:
Because ''f'' is a probability density function, it integrates to unity:
:
By the
substitution rule of integral calculus, we then have
:
So
is also properly normalized.
Rate parameter
Some families of distributions use a rate parameter (or "inverse scale parameter"), which is simply the reciprocal of the ''scale parameter''. So for example the
exponential distribution
In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant averag ...
with scale parameter β and probability density
:
could equivalently be written with rate parameter λ as
:
Examples
* The
uniform distribution
Uniform distribution may refer to:
* Continuous uniform distribution
* Discrete uniform distribution
* Uniform distribution (ecology)
* Equidistributed sequence In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be ...
can be parameterized with a
location parameter
In geography, location or place are used to denote a region (point, line, or area) on Earth's surface or elsewhere. The term ''location'' generally implies a higher degree of certainty than ''place'', the latter often indicating an entity with an ...
of
and a scale parameter
.
* The
normal distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is
:
f(x) = \frac e^
The parameter \mu i ...
has two parameters: a
location parameter
In geography, location or place are used to denote a region (point, line, or area) on Earth's surface or elsewhere. The term ''location'' generally implies a higher degree of certainty than ''place'', the latter often indicating an entity with an ...
and a scale parameter
. In practice the normal distribution is often parameterized in terms of the ''squared'' scale
, which corresponds to the
variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of number ...
of the distribution.
* The
gamma distribution
In probability theory and statistics, the gamma distribution is a two- parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma dis ...
is usually parameterized in terms of a scale parameter
or its inverse.
* Special cases of distributions where the scale parameter equals unity may be called "standard" under certain conditions. For example, if the location parameter equals zero and the scale parameter equals one, the
normal distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is
:
f(x) = \frac e^
The parameter \mu i ...
is known as the ''standard'' normal distribution, and the
Cauchy distribution
The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) fu ...
as the ''standard'' Cauchy distribution.
Estimation
A statistic can be used to estimate a scale parameter so long as it:
* Is location-invariant,
* Scales linearly with the scale parameter, and
* Converges as the sample size grows.
Various
measures of statistical dispersion satisfy these.
In order to make the statistic a
consistent estimator
In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter ''θ''0—having the property that as the number of data points used increases indefinitely, the resul ...
for the scale parameter, one must in general multiply the statistic by a constant
scale factor. This scale factor is defined as the theoretical value of the value obtained by dividing the required scale parameter by the asymptotic value of the statistic. Note that the scale factor depends on the distribution in question.
For instance, in order to use the
median absolute deviation
In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.
For ...
(MAD) to estimate the
standard deviation of the
normal distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is
:
f(x) = \frac e^
The parameter \mu i ...
, one must multiply it by the factor
:
where Φ
−1 is the
quantile function
In probability and statistics, the quantile function, associated with a probability distribution of a random variable, specifies the value of the random variable such that the probability of the variable being less than or equal to that value e ...
(inverse of the
cumulative distribution function
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x.
Ev ...
) for the standard normal distribution. (See
MAD for details.)
That is, the MAD is not a consistent estimator for the standard deviation of a normal distribution, but 1.4826... MAD is a consistent estimator.
Similarly, the
average absolute deviation
The average absolute deviation (AAD) of a data set is the average of the absolute deviations from a central point. It is a summary statistic of statistical dispersion or variability. In the general form, the central point can be a mean, median ...
needs to be multiplied by approximately 1.2533 to be a consistent estimator for standard deviation. Different factors would be required to estimate the standard deviation if the population did not follow a normal distribution.
See also
*
Central tendency
In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution.Weisberg H.F (1992) ''Central Tendency and Variability'', Sage University Paper Series on Quantitative Applications ...
*
Invariant estimator
In statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitive ...
*
Location parameter
In geography, location or place are used to denote a region (point, line, or area) on Earth's surface or elsewhere. The term ''location'' generally implies a higher degree of certainty than ''place'', the latter often indicating an entity with an ...
*
Location-scale family
*
Mean-preserving spread
*
Scale mixture
*
Shape parameter
In probability theory and statistics, a shape parameter (also known as form parameter) is a kind of numerical parameter of a parametric family of probability distributionsEveritt B.S. (2002) Cambridge Dictionary of Statistics. 2nd Edition. CUP.
t ...
*
Statistical dispersion
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartil ...
References
Further reading
*
{{DEFAULTSORT:Scale Parameter
Statistical parameters