In the mathematical theory of probability, the
Wiener process
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It i ...
, named after
Norbert Wiener
Norbert Wiener (November 26, 1894 – March 18, 1964) was an American mathematician and philosopher. He was a professor of mathematics at the Massachusetts Institute of Technology (MIT). A child prodigy, Wiener later became an early researcher ...
, is a
stochastic process used in modeling various phenomena, including
Brownian motion
Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas).
This pattern of motion typically consists of random fluctuations in a particle's position insi ...
and fluctuations in financial markets. A formula for the conditional probability distribution of the extremum of the Wiener process and a sketch of its proof appears in work of H. J. Kusher (appendix 3, page 106) published in 1964.
[H. J. Kushner, "A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise", ''J. Basic Eng'' 86(1), 97–106 (Mar 01, 1964).] a detailed constructive proof appears in work of Dario Ballabio in 1978.
[Dario Ballabio, "Una nuova classe di algoritmi stocastici per l'ottimizzazione globale" (A new class of stochastic algorithms for global optimization), University of Milan, Institute of Mathematics, doctoral dissertation presented on July 12th 1978, pp. 29–33.] This result was developed within a research project about
Bayesian optimization algorithms.
In some global optimization problems the analytical definition of the objective function is unknown and it is only possible to get values at fixed points. There are objective functions in which the cost of an evaluation is very high, for example when the evaluation is the result of an experiment or a particularly onerous measurement. In these cases, the search of the global extremum (maximum or minimum) can be carried out using a methodology named "
Bayesian optimization", which tend to obtain a priori the best possible result with a predetermined number of evaluations. In summary it is assumed that outside the points in which it has already been evaluated, the objective function has a pattern which can be represented by a stochastic process with appropriate characteristics. The stochastic process is taken as a model of the objective function, assuming that the probability distribution of its extrema gives the best indication about extrema of the objective function. In the simplest case of the one-dimensional optimization, given that the objective function has been evaluated in a number of points, there is the problem to choose in which of the intervals thus identified is more appropriate to invest in a further evaluation. If a Wiener stochastic process is chosen as a model for the objective function, it is possible to calculate the probability distribution of the model extreme points inside each interval, conditioned by the known values at the interval boundaries. The comparison of the obtained distributions provides a criterion for selecting the interval in which the process should be iterated. The probability value of having identified the interval in which falls the global extremum point of the objective function can be used as a stopping criterion. Bayesian optimization is not an efficient method for the accurate search of local extrema so, once the search range has been restricted, depending on the characteristics of the problem, a specific local optimization method can be used.
Proposition
Let
be a Wiener
stochastic process on an interval