Praseodymium(II) Iodide
   HOME

TheInfoList



OR:

Praseodymium is a
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
; it has
symbol A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
Pr and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
59. It is the third member of the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium (el ...
series and is considered one of the
rare-earth metal The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set of ...
s. It is a soft, silvery, malleable and ductile
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air. Praseodymium always occurs naturally together with the other rare-earth metals. It is the sixth-most abundant rare-earth element and fourth-most abundant lanthanide, making up 9.1
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe the small values of miscellaneous dimensionless quantity, dimensionless quantities, e.g. mole fraction or mass fraction (chemistry), mass fraction. Since t ...
of the Earth's crust, an abundance similar to that of
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
. In 1841, Swedish chemist
Carl Gustav Mosander Carl Gustaf Mosander (10 September 1797 – 15 October 1858) was a Swedish chemist. He discovered the rare earth elements lanthanum, erbium and terbium. Early life and education Born in Kalmar, Mosander attended school there until he move ...
extracted a rare-earth oxide residue he called
didymium Didymium () is a mixture of the elements praseodymium and neodymium. It is used in safety glasses for glassblowing and blacksmithing and filter lenses for flame testing, especially with a gas (propane)-powered forge, where it provides a filt ...
from a residue he called "lanthana", in turn separated from
cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
salts. In 1885, the Austrian chemist
Carl Auer von Welsbach Carl Auer von Welsbach (1 September 1858 – 4 August 1929), who received the Austrian noble title of Freiherr Auer von Welsbach in 1901, was an Austrian scientist and inventor, who separated didymium into the elements neodymium and praseody ...
separated didymium into two elements that gave salts of different colours, which he named praseodymium and
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
. The name praseodymium comes from the Ancient Greek (), meaning '
leek A leek is a vegetable, a cultivar of ''Allium ampeloprasum'', the broadleaf wild leek (synonym (taxonomy), syn. ''Allium porrum''). The edible part of the plant is a bundle of Leaf sheath, leaf sheaths that is sometimes erroneously called a "s ...
-green', and () 'twin'. Like most
rare-earth element The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set o ...
s, praseodymium most readily forms the +3
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
, which is the only stable state in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water ...
, although the +4 oxidation state is known in some solid compounds and, uniquely among the lanthanides, the +5 oxidation state is attainable at low temperatures. The 0, +1, and +2 oxidation states are rarely found. Aqueous praseodymium ions are yellowish-green, and similarly, praseodymium results in various shades of yellow-green when incorporated into glasses. Many of praseodymium's industrial uses involve its ability to filter yellow light from light sources.


Physical properties

Praseodymium is the third member of the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium (el ...
series, and a member of the
rare-earth metals The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set of ...
. In the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
, it appears between the lanthanides
cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
to its left and
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
to its right, and above the
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
protactinium Protactinium is a chemical element; it has symbol Pa and atomic number 91. It is a dense, radioactive, silvery-gray actinide metal which readily reacts with oxygen, water vapor, and inorganic acids. It forms various chemical compounds, in which p ...
. It is a
ductile Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
metal with a hardness comparable to that of
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
. Praseodymium is calculated to have a very large
atomic radius The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there ...
; with a radius of 247 pm,
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
,
rubidium Rubidium is a chemical element; it has Symbol (chemistry), symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have ...
and
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
are larger. However, observationally, it is usually 185 pm. Neutral praseodymium's 59 electrons are arranged in the
configuration Configuration or configurations may refer to: Computing * Computer configuration or system configuration * Configuration file, a software file used to configure the initial settings for a computer program * Configurator, also known as choice board ...
ef36s2. Like most other lanthanides, praseodymium usually uses only three electrons as valence electrons, as the remaining 4f electrons are too strongly bound to engage in bonding: this is because the 4f orbitals penetrate the most through the inert xenon core of electrons to the nucleus, followed by 5d and 6s, and this penetration increases with higher ionic charge. Even so, praseodymium can in some compounds lose a fourth valence electron because it is early in the lanthanide series, where the nuclear charge is still low enough and the 4f subshell energy high enough to allow the removal of further valence electrons.Greenwood and Earnshaw, pp. 1232–8 Similarly to the other early lanthanides, praseodymium has a double hexagonal close-packed crystal structure at room temperature, called the alpha phase (α-Pr). At it transforms to a different
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
that has a
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the Crystal structure#Unit cell, unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There ...
structure (β-Pr), and it melts at . Praseodymium, like all of the lanthanides, is
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
at room temperature. Unlike some other rare-earth metals, which show
antiferromagnetic In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring Spin (physics), spins (on different sublattices) pointing in oppos ...
or
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
ordering at low temperatures, praseodymium is paramagnetic at all temperatures above 1 K.


Chemical properties

Praseodymium metal tarnishes slowly in air, forming a
spalling Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure (as in a ball ...
green oxide layer like
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
rust; a centimetre-sized sample of praseodymium metal corrodes completely in about a year. It burns readily at 150 °C to form
praseodymium(III,IV) oxide Praseodymium(III,IV) oxide is the inorganic compound with the formula that is insoluble in water. It has a cubic fluorite structure. It is the most stable form of praseodymium oxide at ambient temperature and pressure. Properties and structure ...
, a
nonstoichiometric compound Non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); most often, in su ...
approximating to : : This may be reduced to
praseodymium(III) oxide Praseodymium(III) oxide, praseodymium oxide or praseodymia is the chemical compound composed of praseodymium and oxygen with the formula Pr2O3. It forms light green hexagonal crystals. Praseodymium(III) oxide crystallizes in the manganese(III) o ...
with hydrogen gas.
Praseodymium(IV) oxide Praseodymium is a chemical element; it has symbol Pr and atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic ...
, , is the most oxidised product of the combustion of praseodymium and can be obtained by either reaction of praseodymium metal with pure oxygen at 400 °C and 282 bar or by disproportionation of in boiling acetic acid. The reactivity of praseodymium conforms to
periodic trends In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain Chemical element, elements when grouped by period (periodic table), period and/or Group (periodic table), group. They w ...
, as it is one of the first and thus one of the largest lanthanides. At 1000 °C, many praseodymium oxides with composition PrO2−''x'' exist as disordered, nonstoichiometric phases with 0 < ''x'' < 0.25, but at 400–700 °C the oxide defects are instead ordered, creating phases of the general formula with ''n'' = 4, 7, 9, 10, 11, 12, and ∞. These phases PrO''y'' are sometimes labelled α and β′ (nonstoichiometric), β (''y'' = 1.833), δ (1.818), ε (1.8), ζ (1.778), ι (1.714), θ, and σ. Praseodymium is an electropositive element and reacts slowly with cold water and quite quickly with hot water to form praseodymium(III) hydroxide: : Praseodymium metal reacts with all the stable
halogen The halogens () are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would ...
s to form trihalides: :
reen A rhyne (Somerset), rhine/rhyne (Gloucestershire), or reen (South Wales) (all pronounced "reen"; from Old English ''ryne'' or Welsh Language, Welsh ''rhewyn'' or ''rhewin'' "ditch") is a drainage ditch, or canal, used to turn areas of wetla ...
:
reen A rhyne (Somerset), rhine/rhyne (Gloucestershire), or reen (South Wales) (all pronounced "reen"; from Old English ''ryne'' or Welsh Language, Welsh ''rhewyn'' or ''rhewin'' "ditch") is a drainage ditch, or canal, used to turn areas of wetla ...
:
reen A rhyne (Somerset), rhine/rhyne (Gloucestershire), or reen (South Wales) (all pronounced "reen"; from Old English ''ryne'' or Welsh Language, Welsh ''rhewyn'' or ''rhewin'' "ditch") is a drainage ditch, or canal, used to turn areas of wetla ...
: The tetrafluoride, PrF4, is also known, and is produced by reacting a mixture of
sodium fluoride Sodium fluoride (NaF) is an inorganic compound with the formula . It is a colorless or white solid that is readily soluble in water. It is used in trace amounts in the fluoridation of drinking water to prevent tooth decay, and in toothpastes ...
and praseodymium(III) fluoride with fluorine gas, producing , following which sodium fluoride is removed from the reaction mixture with liquid
hydrogen fluoride Hydrogen fluoride (fluorane) is an Inorganic chemistry, inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluori ...
. Additionally, praseodymium forms a bronze diiodide; like the diiodides of lanthanum, cerium, and
gadolinium Gadolinium is a chemical element; it has Symbol (chemistry), symbol Gd and atomic number 64. It is a silvery-white metal when oxidation is removed. Gadolinium is a malleable and ductile rare-earth element. It reacts with atmospheric oxygen or moi ...
, it is a praseodymium(III)
electride An electride is an ionic compound in which an electron serves the role of the anion. Solutions Solutions of alkali metals in ammonia are electride salts. In the case of sodium, these blue solutions consist of a(NH3)6sup>+ and solvated electron ...
compound. Praseodymium dissolves readily in dilute
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
to form solutions containing the
chartreuse Chartreuse () may refer to: Common meanings * Chartreuse (liqueur), a French liqueur * Chartreuse (color), a yellow-green color named after the liqueur * Grande Chartreuse, the original Carthusian monastery Other uses * Chartreuse (dish), a ...
ions, which exist as complexes: : Dissolving praseodymium(IV) compounds in water does not result in solutions containing the yellow ions; because of the high positive
standard reduction potential Redox potential (also known as oxidation / reduction potential, ''ORP'', ''pe'', ''E_'', or E_) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respe ...
of the/ couple at +3.2 V, these ions are unstable in aqueous solution, oxidising water and being reduced to . The value for the /Pr couple is −2.35 V. However, in highly basic aqueous media, ions can be generated by oxidation with
ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
. Praseodymium(V) has been observed by matrix isolation (in 2016) and in the bulk state (in 2025). The existence of praseodymium in its +5 oxidation state (with the stable electron configuration of the preceding noble gas
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
) under noble-gas matrix isolation conditions was reported in 2016. The species assigned to the +5 state were identified as , its and Ar adducts, and . Further, in 2025, a neutral compound , formally Pr(V) but with an inverted ligand field, was isolated and characterized crystallographically at low temperatures.


Organopraseodymium compounds

Organopraseodymium compounds are very similar to those of the other lanthanides, as they all share an inability to undergo
π backbonding In chemistry, pi backbonding or π backbonding is a π-bonding interaction between a filled (or half filled) orbital of a transition metal atom and a vacant orbital on an adjacent ion or molecule. In this type of interaction, electrons from the ...
. They are thus mostly restricted to the mostly ionic
cyclopentadienide Sodium cyclopentadienide is an organosodium compound with the formula C5H5Na. The compound is often abbreviated as NaCp, where Cp− is the cyclopentadienide anion. Sodium cyclopentadienide is a colorless solid, although samples often are pin ...
s (isostructural with those of lanthanum) and the σ-bonded simple alkyls and aryls, some of which may be polymeric. The coordination chemistry of praseodymium is largely that of the large, electropositive ion, and is thus largely similar to those of the other early lanthanides , , and . For instance, like lanthanum, cerium, and neodymium, praseodymium nitrates form both 4:3 and 1:1 complexes with 18-crown-6, whereas the middle lanthanides from
promethium Promethium is a chemical element; it has Symbol (chemistry), symbol Pm and atomic number 61. All of its isotopes are Radioactive decay, radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in the Earth's crust a ...
to
gadolinium Gadolinium is a chemical element; it has Symbol (chemistry), symbol Gd and atomic number 64. It is a silvery-white metal when oxidation is removed. Gadolinium is a malleable and ductile rare-earth element. It reacts with atmospheric oxygen or moi ...
can only form the 4:3 complex and the later lanthanides from
terbium Terbium is a chemical element; it has Symbol (chemistry), symbol Tb and atomic number 65. It is a silvery-white, rare earth element, rare earth metal that is malleable and ductile. The ninth member of the lanthanide series, terbium is a fairly ele ...
to
lutetium Lutetium is a chemical element; it has symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted am ...
cannot successfully coordinate to all the ligands. Such praseodymium complexes have high but uncertain coordination numbers and poorly defined stereochemistry, with exceptions resulting from exceptionally bulky ligands such as the tricoordinate . There are also a few mixed oxides and fluorides involving praseodymium(IV), but it does not have an appreciable coordination chemistry in this oxidation state like its neighbour cerium. However, the first example of a molecular complex of praseodymium(IV) has recently been reported.


Isotopes

Praseodymium has only one stable and naturally occurring isotope, 141Pr. It is thus a mononuclidic and
monoisotopic element A monoisotopic element is an element which has only a single stable isotope (nuclide). There are 26 such elements, as listed. Stability is experimentally defined for chemical elements, as there are a number of stable nuclides with atomic number ...
, and its
standard atomic weight The standard atomic weight of a chemical element (symbol ''A''r°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, ...
can be determined with high precision as it is a constant of nature. This isotope has 82 neutrons, which is a magic number that confers additional stability. This isotope is produced in stars through the s- and
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
es (slow and rapid neutron capture, respectively). Thirty-eight other radioisotopes have been synthesized. All of these isotopes have half-lives under a day (and most under a minute), with the single exception of 143Pr with a half-life of 13.6 days. Both 143Pr and 141Pr occur as
fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
s of
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
. The primary decay mode of isotopes lighter than 141Pr is
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron emi ...
or
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
to
isotopes of cerium Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant (88.48% natural abundance) and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to under ...
, while that of heavier isotopes is
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
to
isotopes of neodymium Naturally occurring neodymium (60Nd) is composed of five stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and two long-lived radioisotopes, 144Nd and 150Nd. In all, 35 radioisotop ...
.


History

In 1751, the Swedish mineralogist
Axel Fredrik Cronstedt Baron Axel Fredrik Cronstedt (''/kroonstet/'' 23 December 1722 – 19 August 1765) was a Sweden, Swedish Mineralogy, mineralogist and chemist who discovered the Chemical element, element nickel in 1751 as a mining expert with the Bureau of Mines. ...
discovered a heavy mineral from the mine at
Bastnäs Bastnäs ( or ) is an ore field near Riddarhyttan, Västmanland, Sweden. The mines in Bastnäs were earliest mentioned in 1692. Iron, copper and rare-earth elements were extracted from the mines and 4,500 tons of cerium was produced between 1875 a ...
, later named
cerite Cerite is a complex silicate mineral group containing cerium, formula .http://rruff.geo.arizona.edu/doclib/hom/ceritece.pdf Handbook of Mineralogy The cerium and lanthanum content varies with the Ce rich species (cerite-(Ce)) and the La rich speci ...
. Thirty years later, the fifteen-year-old
Wilhelm Hisinger Wilhelm Hisinger (23 December 1766 – 28 June 1852) was a Swedish physicist and chemist who in 1807, working in coordination with Jöns Jakob Berzelius, noted that in electrolysis any given substance always went to the same pole, and that substan ...
, from the family owning the mine, sent a sample of it to
Carl Scheele Carl Wilhelm Scheele (, ; 9 December 1742 – 21 May 1786) was a German-Swedish pharmaceutical chemist. Scheele discovered oxygen (although Joseph Priestley published his findings first), and identified the elements molybdenum, tungsten, b ...
, who did not find any new elements within. In 1803, after Hisinger had become an ironmaster, he returned to the mineral with
Jöns Jacob Berzelius Baron Jöns Jacob Berzelius (; 20 August 1779 – 7 August 1848) was a Swedish chemist. Berzelius is considered, along with Robert Boyle, John Dalton, and Antoine Lavoisier, to be one of the founders of modern chemistry. Berzelius became a memb ...
and isolated a new oxide, which they named ''ceria'' after the dwarf planet Ceres (dwarf planet), Ceres, which had been discovered two years earlier.Emsley, pp. 120–5 Ceria was simultaneously and independently isolated in Germany by Martin Heinrich Klaproth.Greenwood and Earnshaw, p. 1424 Between 1839 and 1843, ceria was shown to be a mixture of oxides by the Swedish surgeon and chemist Carl Gustaf Mosander, who lived in the same house as Berzelius; he separated out two other oxides, which he named ''lanthana'' and ''didymia''. He partially decomposed a sample of cerium nitrate by roasting it in air and then treating the resulting oxide with dilute nitric acid. The metals that formed these oxides were thus named ''lanthanum'' and ''
didymium Didymium () is a mixture of the elements praseodymium and neodymium. It is used in safety glasses for glassblowing and blacksmithing and filter lenses for flame testing, especially with a gas (propane)-powered forge, where it provides a filt ...
''. While lanthanum turned out to be a pure element, didymium was not and turned out to be only a mixture of all the stable early lanthanides from praseodymium to europium, as had been suspected by Marc Delafontaine after spectroscopic analysis, though he lacked the time to pursue its separation into its constituents. The heavy pair of samarium and europium were only removed in 1879 by Paul-Émile Lecoq de Boisbaudran and it was not until 1885 that
Carl Auer von Welsbach Carl Auer von Welsbach (1 September 1858 – 4 August 1929), who received the Austrian noble title of Freiherr Auer von Welsbach in 1901, was an Austrian scientist and inventor, who separated didymium into the elements neodymium and praseody ...
separated didymium into praseodymium and neodymium. Von Welsbach confirmed the separation by spectroscopic analysis, but the products were of relatively low purity. Since neodymium was a larger constituent of didymium than praseodymium, it kept the old name with disambiguation, while praseodymium was distinguished by the leek-green colour of its salts (Greek πρασιος, "leek green").Greenwood and Earnshaw, p. 1229–32 The composite nature of didymium had previously been suggested in 1882 by Bohuslav Brauner, who did not experimentally pursue its separation.


Occurrence and production

Praseodymium is not particularly rare, despite it being in the rare-earth metals, making up 9.2 mg/kg of the Earth's crust.Abundance of Elements in the Earth's Crust and in the Sea, ''CRC Handbook of Chemistry and Physics,'' 97th edition (2016–2017), p. 14-17 Praseodymium's classification as a rare-earth metal comes from its rarity relative to "common earths" such as lime and magnesia, the few known minerals containing it for which extraction is commercially viable, as well as the length and complexity of extraction. Although not particularly rare, praseodymium is never found as a dominant rare earth in praseodymium-bearing minerals. It is always preceded by cerium and lanthanum and usually also by neodymium. The Pr3+ ion is similar in size to the early lanthanides of the cerium group (those from lanthanum up to samarium and europium) that immediately follow in the periodic table, and hence it tends to occur along with them in phosphate, silicate and carbonate minerals, such as monazite (MIIIPO4) and bastnäsite (MIIICO3F), where M refers to all the rare-earth metals except scandium and the radioactive
promethium Promethium is a chemical element; it has Symbol (chemistry), symbol Pm and atomic number 61. All of its isotopes are Radioactive decay, radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in the Earth's crust a ...
(mostly Ce, La, and Y, with somewhat less Nd and Pr). Bastnäsite is usually lacking in thorium and the heavy lanthanides, and the purification of the light lanthanides from it is less involved. The ore, after being crushed and ground, is first treated with hot concentrated sulfuric acid, evolving carbon dioxide,
hydrogen fluoride Hydrogen fluoride (fluorane) is an Inorganic chemistry, inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluori ...
, and silicon tetrafluoride. The product is then dried and leached with water, leaving the early lanthanide ions, including lanthanum, in solution. The procedure for monazite, which usually contains all the rare earth, as well as thorium, is more involved. Monazite, because of its magnetic properties, can be separated by repeated electromagnetic separation. After separation, it is treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earth. The acidic filtrates are partially neutralized with sodium hydroxide to pH 3–4, during which thorium precipitates as hydroxide and is removed. The solution is treated with ammonium oxalate to convert rare earth to their insoluble oxalates, the oxalates are converted to oxides by annealing, and the oxides are dissolved in nitric acid. This last step excludes one of the main components,
cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
, whose oxide is insoluble in HNO3. Care must be taken when handling some of the residues as they contain radium-228, 228Ra, the daughter of 232Th, which is a strong gamma emitter. Praseodymium may then be separated from the other lanthanides via ion-exchange chromatography, or by using a solvent such as tributyl phosphate where the solubility of Ln3+ increases as the atomic number increases. If ion-exchange chromatography is used, the mixture of lanthanides is loaded into one column of cation-exchange resin and Cu2+ or Zn2+ or Fe3+ is loaded into the other. An aqueous solution of a complexing agent, known as the eluant (usually triammonium edtate), is passed through the columns, and Ln3+ is displaced from the first column and redeposited in a compact band at the top of the column before being re-displaced by . The Gibbs free energy of formation for Ln(edta·H) complexes increases along with the lanthanides by about one quarter from Ce3+ to Lu3+, so that the Ln3+ cations descend the development column in a band and are fractionated repeatedly, eluting from heaviest to lightest. They are then precipitated as their insoluble oxalates, burned to form the oxides, and then reduced to metals.


Applications

Leo Moser (not to be confused with Leo Moser, the mathematician of the same name), son of Ludwig Moser, founder of the Moser Glassworks in what is now Karlovy Vary in the Czech Republic, investigated the use of praseodymium in glass coloration in the late 1920s, yielding a yellow-green glass given the name "Prasemit". However, at that time far cheaper colorants could give a similar color, so Prasemit was not popular, few pieces were made, and examples are now extremely rare. Moser also blended praseodymium with neodymium to produce "Heliolite" glass ("Heliolit" in German language, German), which was more widely accepted. The first enduring commercial use of purified praseodymium, which continues today, is in the form of a yellow-orange "Praseodymium Yellow" stain for ceramics, which is a solid solution in the zirconium(IV) silicate, zircon lattice. This stain has no hint of green in it; by contrast, at sufficiently high loadings, praseodymium glass is distinctly green rather than pure yellow. Like many other lanthanides, praseodymium's shielded f-orbitals allow for long excited state lifetimes and high luminescence yields. Pr3+ as a Doping (semiconductor), dopant ion therefore sees many applications in optics and photonics. These include Pr:YLF laser, DPSS-lasers, single-mode fiber optical amplifiers, fiber lasers, upconverting nanoparticles as well as activators in red, green, blue, and ultraviolet phosphors. Silicate crystals doped with praseodymium ions have also been used to slow light, slow a light pulse down to a few hundred meters per second. As the lanthanides are so similar, praseodymium can substitute for most other lanthanides without significant loss of function, and indeed many applications such as mischmetal and ferrocerium alloys involve variable mixes of several lanthanides, including small quantities of praseodymium. The following more modern applications involve praseodymium specifically or at least praseodymium in a small subset of the lanthanides: * In combination with neodymium, another rare-earth element, praseodymium is used to create high-power magnets notable for their strength and durability.Rare Earth Elements 101
, IAMGOLD Corporation, April 2012, pp. 5, 7.
In general, most alloys of the cerium-group rare earths (lanthanum through samarium) with 3d transition metals give extremely stable magnets that are often used in small equipment, such as motors, printers, watches, headphones, loudspeakers, and magnetic storage. *Praseodymium–nickel intermetallic (PrNi5) has such a strong Magnetic refrigeration#The magnetocaloric effect, magnetocaloric effect that it has allowed scientists to approach within one thousandth of a degree of absolute zero. * As an alloying agent with magnesium to create high-strength metals that are used in aircraft engines; yttrium and
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
are suitable substitutes. * Praseodymium is present in the rare-earth mixture whose fluoride forms the core of carbon arc lights, which are used in the movie studio, motion picture industry for studio lighting and Image projector, projector lights.Emsley, pp. 423–5 * Praseodymium chemical compound, compounds give glasses, vitreous enamel, enamels and ceramics a yellow color. * Praseodymium is a component of
didymium Didymium () is a mixture of the elements praseodymium and neodymium. It is used in safety glasses for glassblowing and blacksmithing and filter lenses for flame testing, especially with a gas (propane)-powered forge, where it provides a filt ...
glass, which is used to make certain types of welding, welder's and glass blowing, glass blower's goggles. * Praseodymium oxide in solid solution with ceria or ceria-zirconia has been used as an oxidation catalyst. Due to its role in permanent magnets used for wind turbines, it has been argued that praseodymium will be one of the main objects of geopolitical competition in a world running on renewable energy. However, this perspective has been criticized for failing to recognize that most wind turbines do not use permanent magnets and for underestimating the power of economic incentives for expanded production.


Biological role and precautions

The early lanthanides have been found to be essential to some methanotrophic bacteria living in Mudpot, volcanic mudpots, such as ''Methylacidiphilum fumariolicum'': lanthanum, cerium, praseodymium, and neodymium are about equally effective. Praseodymium is otherwise not known to have a biological role in any other organisms, but it is not very toxic either. Intravenous injection of rare earths into animals has been known to impair liver function, but the main side effects from inhalation of rare-earth oxides in humans come from radioactive thorium and
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
impurities.


Notes


References


Bibliography

* *


Further reading

* R. J. Callow, ''The Industrial Chemistry of the Lanthanons, Yttrium, Thorium, and Uranium'', Pergamon Press, 1967. *


External links


WebElements.com—Praseodymium


{{Authority control Praseodymium, Chemical elements Chemical elements with double hexagonal close-packed structure Lanthanides Reducing agents