Monomers and repeat units
The identity of the repeat units (monomer residues, also known as "mers") comprising a polymer is its first and most important attribute. Polymer nomenclature is generally based upon the type of monomer residues comprising the polymer. A polymer which contains only a single type ofMicrostructure
The microstructure of a polymer (sometimes called configuration) relates to the physical arrangement of monomer residues along the backbone of the chain. These are the elements of polymer structure that require the breaking of a covalent bond in order to change. Various polymer structures can be produced depending on the monomers and reaction conditions: A polymer may consist of linear macromolecules containing each only one unbranched chain. In the case of unbranched polyethylene, this chain is a long-chain ''n''-alkane. There are also branched macromolecules with a main chain and side chains, in the case of polyethylene the side chains would bePolymer architecture
Chain length
A common means of expressing the length of a chain is theMonomer arrangement in copolymers
Copolymers are classified either as statistical copolymers, alternating copolymers, block copolymers, graft copolymers or gradient copolymers. In the schematic figure below, Ⓐ and Ⓑ symbolize the twoTacticity
Tacticity describes the relativeMorphology
Polymer morphology generally describes the arrangement and microscale ordering of polymer chains in space. The macroscopic physical properties of a polymer are related to the interactions between the polymer chains. * Disordered polymers: In the solid state, atactic polymers, polymers with a high degree of branching and random copolymers formCrystallinity
When applied to polymers, the term ''crystalline'' has a somewhat ambiguous usage. In some cases, the term ''crystalline'' finds identical usage to that used in conventionalChain conformation
The space occupied by a polymer molecule is generally expressed in terms ofProperties
Polymer properties depend of their structure and they are divided into classes according to their physical bases. Many physical and chemical properties describe how a polymer behaves as a continuous macroscopic material. They are classified as bulk properties, orMechanical properties
Tensile strength
TheYoung's modulus of elasticity
Transport properties
Phase behavior
Crystallization and melting
Depending on their chemical structures, polymers may be either semi-crystalline or amorphous. Semi-crystalline polymers can undergo crystallization and melting transitions, whereas amorphous polymers do not. In polymers, crystallization and melting do not suggest solid-liquid phase transitions, as in the case of water or other molecular fluids. Instead, crystallization and melting refer to the phase transitions between two solid states (''i.e.'', semi-crystalline and amorphous). Crystallization occurs above the glass-transition temperature (''T''g) and below the melting temperature (''T''m).Glass transition
All polymers (amorphous or semi-crystalline) go throughMixing behavior
Inclusion of plasticizers
Inclusion of plasticizers tends to lower Tg and increase polymer flexibility. Addition of the plasticizer will also modify dependence of the glass-transition temperature Tg on the cooling rate. The mobility of the chain can further change if the molecules of plasticizer give rise to hydrogen bonding formation. Plasticizers are generally small molecules that are chemically similar to the polymer and create gaps between polymer chains for greater mobility and fewer interchain interactions. A good example of the action of plasticizers is related to polyvinylchlorides or PVCs. A uPVC, or unplasticized polyvinylchloride, is used for things such as pipes. A pipe has no plasticizers in it, because it needs to remain strong and heat-resistant. Plasticized PVC is used in clothing for a flexible quality. Plasticizers are also put in some types of cling film to make the polymer more flexible.Chemical properties
The attractive forces between polymer chains play a large part in determining the polymer’s properties. Because polymer chains are so long, they have many such interchain interactions per molecule, amplifying the effect of these interactions on the polymer properties in comparison to attractions between conventional molecules. Different side groups on the polymer can lend the polymer toOptical properties
Polymers such asElectrical properties
Most conventional polymers such as polyethylene are electrical insulators, but the development of polymers containing π-conjugated bonds has led to a wealth of polymer-basedApplications
Nowadays, synthetic polymers are used in almost all walks of life. Modern society would look very different without them. The spreading of polymer use is connected to their unique properties: low density, low cost, good thermal/electrical insulation properties, high resistance to corrosion, low-energy demanding polymer manufacture and facile processing into final products. For a given application, the properties of a polymer can be tuned or enhanced by combination with other materials, as in composites. Their application allows to save energy (lighter cars and planes, thermally insulated buildings), protect food and drinking water (packaging), save land and lower use of fertilizers (synthetic fibres), preserve other materials (coatings), protect and save lifes (hygiene, medical applications). A representative, non-exhaustive list of applications is given below. * Clothing, sportswear and accessories: polyester andStandardized nomenclature
There are multiple conventions for naming polymer substances. Many commonly used polymers, such as those found in consumer products, are referred to by a common or trivial name. The trivial name is assigned based on historical precedent or popular usage rather than a standardized naming convention. Both theCharacterization
Polymer characterization spans many techniques for determining the chemical composition, molecular weight distribution, and physical properties. Select common techniques include the following: *Degradation
Polymer degradation is a change in the properties—tensile strength,Product failure
Failure of safety-critical polymer components can cause serious accidents, such as fire in the case of cracked and degraded polymer fuel lines. Chlorine-induced cracking of acetal resin plumbing joints and polybutylene pipes has caused many serious floods in domestic properties, especially in the US in the 1990s. Traces of chlorine in the water supply attacked polymers present in the plumbing, a problem which occurs faster if any of the parts have been poorly extruded or Injection molding, injection molded. Attack of the acetal joint occurred because of faulty molding, leading to cracking along the threads of the fitting where there is stress concentration. Polymer oxidation has caused accidents involving medical devices. One of the oldest known failure modes is ozone cracking caused by chain scission when ozone gas attacks susceptibleSee also
*Biopolymer *Ideal chain *Catenation *Inorganic polymer *List of important publications in chemistry#Polymer chemistry, Important publications in polymer chemistry *Oligomer *Polymer adsorption *Polymer classes (disambiguation), Polymer classes *Polymer engineering *Polymerization *Merosity, Polymery (botany) *Reactive compatibilization *Sequence-controlled polymer *Shape-memory polymer *Sol–gel process *Supramolecular polymer *Thermoplastic *Thermosetting polymerReferences
Bibliography
* * * *External links