Polyhedral Net
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a net of a
polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
is an arrangement of non-overlapping
edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
-joined
polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
s in the
plane Plane most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface * Plane (mathematics), generalizations of a geometrical plane Plane or planes may also refer to: Biology * Plane ...
which can be folded (along edges) to become the
face The face is the front of the head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affect th ...
s of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and
solid geometry Solid geometry or stereometry is the geometry of Three-dimensional space, three-dimensional Euclidean space (3D space). A solid figure is the region (mathematics), region of 3D space bounded by a two-dimensional closed surface; for example, a ...
in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard. An early instance of polyhedral nets appears in the works of
Albrecht Dürer Albrecht Dürer ( , ;; 21 May 1471 – 6 April 1528),Müller, Peter O. (1993) ''Substantiv-Derivation in Den Schriften Albrecht Dürers'', Walter de Gruyter. . sometimes spelled in English as Durer or Duerer, was a German painter, Old master prin ...
, whose 1525 book ''A Course in the Art of Measurement with Compass and Ruler'' (''Unterweysung der Messung mit dem Zyrkel und Rychtscheyd '') included nets for the
Platonic solid In geometry, a Platonic solid is a Convex polytope, convex, regular polyhedron in three-dimensional space, three-dimensional Euclidean space. Being a regular polyhedron means that the face (geometry), faces are congruence (geometry), congruent (id ...
s and several of the
Archimedean solid The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They ...
s. These constructions were first called nets in 1543 by
Augustin Hirschvogel Augustin Hirschvogel (1503 – February 1553) was a German artist, mathematician, and cartographer known primarily for his etchings. His thirty-five small landscape etchings, made between 1545 and 1549, assured him a place in the Danube School, ...
.


Existence and uniqueness

Many different nets can exist for a given polyhedron, depending on the choices of which edges are joined and which are separated. The edges that are cut from a convex polyhedron to form a net must form a
spanning tree In the mathematical field of graph theory, a spanning tree ''T'' of an undirected graph ''G'' is a subgraph that is a tree which includes all of the vertices of ''G''. In general, a graph may have several spanning trees, but a graph that is no ...
of the polyhedron, but cutting some spanning trees may cause the polyhedron to self-overlap when unfolded, rather than forming a net. Conversely, a given net may fold into more than one different convex polyhedron, depending on the angles at which its edges are folded and the choice of which edges to glue together. If a net is given together with a pattern for gluing its edges together, such that each vertex of the resulting shape has positive
angular defect In geometry, the angular defect or simply defect (also called deficit or deficiency) is the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the ''exces ...
and such that the sum of these defects is exactly 4, then there necessarily exists exactly one polyhedron that can be folded from it; this is
Alexandrov's uniqueness theorem Alexandrov's theorem on polyhedra is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each othe ...
. However, the polyhedron formed in this way may have different faces than the ones specified as part of the net: some of the net polygons may have folds across them, and some of the edges between net polygons may remain unfolded. Additionally, the same net may have multiple valid gluing patterns, leading to different folded polyhedra. In 1975, G. C. Shephard asked whether every convex polyhedron has at least one net, or simple edge-unfolding. This question, which is also known as Dürer's conjecture, or Dürer's unfolding problem, remains unanswered. There exist non-convex polyhedra that do not have nets, and it is possible to subdivide the faces of every convex polyhedron (for instance along a
cut locus In differential geometry, the cut locus of a point on a manifold is the closure of the set of all other points on the manifold that are connected to by two or more distinct shortest geodesics. More generally, the cut locus of a closed set on ...
) so that the set of subdivided faces has a net. In 2014
Mohammad Ghomi Muhammad (8 June 632 CE) was an Arab religious and political leader and the founder of Islam. According to Islam, he was a prophet who was divinely inspired to preach and confirm the monotheistic teachings of Adam, Noah, Abraham, Moses, ...
showed that every convex polyhedron admits a net after an
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More general ...
. Furthermore, in 2019 Barvinok and Ghomi showed that a generalization of Dürer's conjecture fails for ''pseudo edges'', i.e., a network of geodesics which connect vertices of the polyhedron and form a graph with convex faces. A related open question asks whether every net of a convex polyhedron has a blooming, a continuous non-self-intersecting motion from its flat to its folded state that keeps each face flat throughout the motion.


Shortest path

The
shortest path In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between two ...
over the surface between two points on the surface of a polyhedron corresponds to a straight line on a suitable net for the subset of faces touched by the path. The net has to be such that the straight line is fully within it, and one may have to consider several nets to see which gives the shortest path. For example, in the case of a
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
, if the points are on adjacent faces one candidate for the shortest path is the path crossing the common edge; the shortest path of this kind is found using a net where the two faces are also adjacent. Other candidates for the shortest path are through the surface of a third face adjacent to both (of which there are two), and corresponding nets can be used to find the shortest path in each category.
The spider and the fly problem upright=1.3, Isometric projection and net of naive (1) and optimal (2) solutions of the spider and the fly problem The spider and the fly problem is a recreational mathematics problem with an unintuitive solution, asking for a shortest path or g ...
is a
recreational mathematics Recreational mathematics is mathematics carried out for recreation (entertainment) rather than as a strictly research-and-application-based professional activity or as a part of a student's formal education. Although it is not necessarily limited ...
puzzle which involves finding the shortest path between two points on a cuboid.


Higher-dimensional polytope nets

A net of a
4-polytope In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: Vertex (geometry), vertices, Edge (geo ...
, a four-dimensional
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
, is composed of polyhedral
cells Cell most often refers to: * Cell (biology), the functional basic unit of life * Cellphone, a phone connected to a cellular network * Clandestine cell, a penetration-resistant form of a secret or outlawed organization * Electrochemical cell, a d ...
that are connected by their faces and all occupy the same three-dimensional space, just as the polygon faces of a net of a polyhedron are connected by their edges and all occupy the same plane. The net of the tesseract, the four-dimensional
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
, is used prominently in a painting by
Salvador Dalí Salvador Domingo Felipe Jacinto Dalí i Domènech, Marquess of Dalí of Púbol (11 May 190423 January 1989), known as Salvador Dalí ( ; ; ), was a Spanish Surrealism, surrealist artist renowned for his technical skill, precise draftsmanship, ...
, ''
Crucifixion (Corpus Hypercubus) ''Crucifixion (Corpus Hypercubus)'' is a 1954 oil-on-canvas painting by Salvador Dalí. A nontraditional, surrealism, surrealist Crucifixion in art, portrayal of the Crucifixion, it depicts Christ on a polyhedron net of a tesseract (hypercube). ...
'' (1954). The same tesseract net is central to the plot of the short story "—And He Built a Crooked House—" by
Robert A. Heinlein Robert Anson Heinlein ( ; July 7, 1907 – May 8, 1988) was an American science fiction author, aeronautical engineer, and naval officer. Sometimes called the "dean of science fiction writers", he was among the first to emphasize scientific acc ...
. The number of combinatorially distinct nets of n-dimensional
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
s can be found by representing these nets as a tree on 2n nodes describing the pattern by which pairs of faces of the hypercube are glued together to form a net, together with a
perfect matching In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph with edges and vertices , a perfect matching in is a subset of , such that every vertex in is adjacent to exact ...
on the
complement graph In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of ...
of the tree describing the pairs of faces that are opposite each other on the folded hypercube. Using this representation, the number of different unfoldings for hypercubes of dimensions 2, 3, 4, ... have been counted as :1, 11, 261, 9694, 502110, 33064966, 2642657228, ...


See also

*
Cardboard modeling Cardboard modeling or cardboard engineering is a form of modelling with paper, card stock, paperboard, and corrugated fiberboard. The term ''cardboard engineering'' is sometimes used to differentiate from the craft of making decorative cards. It ...
* Common net *
Paper model Paper models, also called card models or papercraft, are models constructed mainly from sheets of heavy paper, paperboard, card stock, or foam. Details This may be considered a broad category that contains origami and card modeling. Origam ...
*
UV mapping UV mapping is the 3D modeling process of projecting a 3D model's surface to a 2D image for texture mapping. The letters "U" and "V" denote the axes of the 2D texture because "X", "Y", and "Z" are already used to denote the axes of the 3D object i ...


References


External links

* *
Regular 4d Polytope Foldouts
* ttp://www.korthalsaltes.com/ Paper Models of Polyhedrabr>Unfolder
for
Blender A blender (sometimes called a mixer (from Latin ''mixus, the PPP of miscere eng. to Mix)'' or liquidiser in British English) is a kitchen and laboratory appliance used to mix, crush, purée or emulsify food and other substances. A stationary ...

Unfolding
package for
Mathematica Wolfram (previously known as Mathematica and Wolfram Mathematica) is a software system with built-in libraries for several areas of technical computing that allows machine learning, statistics, symbolic computation, data manipulation, network ...
{{Mathematics of paper folding Types of polygons Polyhedra 4-polytopes Spanning tree