Particle Mesh (PM) is a computational method for determining the forces in a system of particles. These particles could be atoms, stars, or fluid components and so the method is applicable to many fields, including molecular dynamics and astrophysics. The basic principle is that a system of particles is converted into a grid (or "mesh") of density values. The potential is then solved for this density grid, and forces are applied to each particle based on what cell it is in, and where in the cell it lies.
Various methods for converting a system of particles into a grid of densities exist. One method is that each particle simply gives its mass to the closest point in the mesh. Another method is the Cloud-in-Cell (CIC) method, where the particles are modelled as constant density cubes, and one particle can contribute mass to several cells.
Once the density distribution is found, the potential energy of each point in the mesh can be determined from the differential form of
Gauss's law
In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
, which—after identifying the
electric field as the negative gradient of the
electric potential
The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
—gives rise to a
Poisson equation
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with t ...
that is easily solved after applying the Fourier transform. Thus it is faster to do a PM calculation than to simply add up all the interactions on a particle due to all other particles for two reasons: firstly, there are usually fewer grid points than particles, so the number of interactions to calculate is smaller, and secondly the grid technique permits the use of Fourier transform techniques to evaluate the potential, and these can be very
fast
Fast or FAST may refer to:
* Fast (noun), high speed or velocity
* Fast (noun, verb), to practice fasting, abstaining from food and/or water for a certain period of time
Acronyms and coded Computing and software
* ''Faceted Application of Subje ...
.
PM is considered an obsolete method as it does not model close interaction between particles well. It has been supplanted by the
Particle-Particle Particle-Mesh method, which uses a straight particle-particle sum between nearby particles in addition to the PM calculation.
See also
*
P3M
*
Particle mesh method
*
Particle mesh Ewald method
*
Madelung constant
The Madelung constant is used in determining the electrostatic potential of a single ion in a crystal by approximating the ions by point charges. It is named after Erwin Madelung, a German physicist.
Because the anions and cations in an ionic so ...
*
Poisson summation formula
In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function (mathematics), function to values of the function's continuous Fourier transform. Consequently, the ...
*
Paul Peter Ewald
Paul Peter Ewald, FRS (January 23, 1888 in Berlin, Germany – August 22, 1985 in Ithaca, New York) was a German crystallographer and physicist, a pioneer of X-ray diffraction methods.
Education
Ewald received his early education in the class ...
Computational physics
{{compu-physics-stub