PKM2
   HOME

TheInfoList



OR:

Pyruvate kinase isozymes M1/M2 (PKM1/M2), also known as pyruvate kinase muscle isozyme (PKM), pyruvate kinase type K, cytosolic thyroid hormone-binding protein (CTHBP), thyroid hormone-binding protein 1 (THBP1), or opa-interacting protein 3 (OIP3), is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that in humans is encoded by the ''PKM2''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. PKM2 is an
isoenzyme In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters (e.g. di ...
of the
glycolytic Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
pyruvate kinase Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. Pyruv ...
. Depending upon the different metabolic functions of the tissues, different isoenzymes of pyruvate kinase are expressed. PKM2 is expressed in some differentiated tissues, such as
lung The lungs are the primary Organ (biology), organs of the respiratory system in many animals, including humans. In mammals and most other tetrapods, two lungs are located near the Vertebral column, backbone on either side of the heart. Their ...
,
fat In nutrition science, nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such chemical compound, compounds, most commonly those that occur in living beings or in food. The term often refers specif ...
tissue,
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
, and
pancreatic islet The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans. The pancreatic islets constitute 1–2% o ...
s, as well as in all cells with a high rate of nucleic acid synthesis, such as normal proliferating cells,
embryonic cell In biology, a blastomere is a type of cell produced by cell division (cleavage) of the zygote after fertilization; blastomeres are an essential part of blastula formation, and blastocyst formation in mammals. Human blastomere characteristics In ...
s, and especially
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
cells.Mac Donald">


Discovery

The discovery of PKM2 began with laboratory observations made by
Otto Heinrich Warburg Otto Heinrich Warburg (, ; 8 October 1883 – 1 August 1970) was a German physiologist, medical doctor, and Nobel laureate. He served as an officer in the elite Uhlan (cavalry regiment) during the First World War, and was awarded the Iron Cross ...
, a German physiologist and Nobel Laureate in Physiology or Medicine in 1931. Warburg's experiments show that the cells exhibit dependence on glucose and are capable of fermentation, even under aerobic conditions. These observations are known as the Warburg effect. Subsequent research on the metabolic demands of cancer cells, studies have been directed towards the investigation of specific subtypes of pyruvate kinase, notably M1 and M2.


Structure

Two isozymes are encoded by the ''PKM'' gene: PKM1 and PKM2. The M-gene consists of 12
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequence ...
s and 11
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of the cistron .e., gen ...
s. PKM1 and PKM2 are different splicing products of the M-gene (exon 9 for PKM1 and exon 10 for PKM2) and solely differ in 23 amino acids within a 56-amino acid stretch (aa 378–434) at their
carboxy terminus The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, carboxy tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When t ...
.


Function

Pyruvate kinase Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. Pyruv ...
catalyze Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
s the last step within
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
, the de
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
of
phosphoenolpyruvate Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) is the carboxylic acid derived from the enol of pyruvate and a phosphate anion. It exists as an anion. PEP is an important intermediate in biochemistry. It has the high-energy phosphate, highest-e ...
to
pyruvate Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic ...
, and is responsible for net ATP production within the glycolytic sequence. In contrast to
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
l
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
, energy regeneration by pyruvate kinase is independent from oxygen supply and allows survival of the organs under
hypoxic Hypoxia means a lower than normal level of oxygen, and may refer to: Reduced or insufficient oxygen * Hypoxia (environmental), abnormally low oxygen content of a specific environment ** Hypoxia in fish, responses of fish to hypoxia * Hypoxia (medi ...
conditions often found in solid tumors. The involvement of this enzyme in a variety of pathways,
protein–protein interaction Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and t ...
s, and nuclear transport suggests its potential to perform multiple nonglycolytic functions with diverse implications, although multidimensional role of this protein is as yet not fully explored. However, a functional role in
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature mainly by processes of sprouting and ...
the so-called process of blood vessel formation by interaction and regulation of Jmjd8 has been shown.


Localization


Tissue

The PKM1 isozyme is expressed in organs that are strongly dependent upon a high rate of energy regeneration, such as
muscle Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to muscle contra ...
and
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
.


Cellular

PKM2 is enzyme pyruvate kinase M2 (PKM2) and a transcriptional coactivator of 
STAT1 Signal transducer and activator of transcription 1 (STAT1) is a transcription factor which in humans is encoded by the ''STAT1'' gene. It is a member of the STAT protein family. Function All STAT molecules are phosphorylated by receptor associ ...
responsible for the induction of the protein PDL-1 expression and its regulation in tumor and immune cells. In the lactate production, the upregulated PKM2 is required and it leads to its contribution in inflammatory response, organ injury and septic death As a consequence, the removal of PKM2 in myeloid cells, administration of anti-PD-L1 or supplementation with recombinant interleukin -1 (IL-7)  eases the microbial clearance, inhibits T cell apoptosis, reduce multiple organ dysfunction and reduce septic death in Bmal1-deficient mice.


Subcellular

PKM2 is a
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
ic enzyme that is associated with other glycolytic enzymes, i.e.,
hexokinase A hexokinase is an enzyme that irreversibly phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important p ...
, glyceraldehyde 3-P dehydrogenase,
phosphoglycerate kinase Phosphoglycerate kinase () (PGK 1) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP : :1,3-bisphosphoglycerate + ADP glycer ...
,
phosphoglyceromutase :''This enzyme is not to be confused with Bisphosphoglycerate mutase which catalyzes the conversion of 1,3-bisphosphoglycerate to 2,3-bisphosphoglycerate.'' Phosphoglycerate mutase (PGM) is any enzyme that catalyzes step 8 of glycolysis - ...
,
enolase Phosphopyruvate hydratase, usually known as enolase, is a metalloenzyme () that catalyses the conversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP), the ninth and penultimate step of glycolysis. The chemical reaction is: :2-ph ...
, and
lactate dehydrogenase Lactate dehydrogenase (LDH or LD) is an enzyme found in nearly all living cells. LDH catalyzes the conversion of pyruvic acid, pyruvate to lactic acid, lactate and back, as it converts NAD+ to NADH and back. A dehydrogenase is an enzyme that t ...
within a so-called glycolytic enzyme complex. However, PKM2 contains an inducible
nuclear localization signal A nuclear localization signal ''or'' sequence (NLS) is an amino acid sequence that 'tags' a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysin ...
in its C-terminal domain. The role of PKM2 within the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
is complex, since pro-proliferative but also pro-
apoptotic Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemical events lead to characteristic cell changes ( morphology) and death. These ...
stimuli have been described. On the one hand, nuclear PKM2 was found to participate in the phosphorylation of
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
1 by direct phosphate transfer from PEP to histone 1. On the other hand, nuclear translocation of PKM2 induced by a
somatostatin Somatostatin, also known as growth hormone-inhibiting hormone (GHIH) or by #Nomenclature, several other names, is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via interaction with G ...
analogue, H2O2, or UV light has been linked with
caspase Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cyste ...
-independent programmed cell death.


Clinical significance


Bi-functional role within tumors

PKM2 is expressed in most human tumors. Initially, a switch from PKM1 to PKM2 expression during
tumorigenesis Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abn ...
was discussed. These conclusions, however, were the result of misinterpretation of
western blot The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detect ...
s that had used PKM1-expressing mouse muscle as the sole non-cancer tissue. In clinical cancer samples, solely an up-regulation of PKM2, but no cancer specificity, could be confirmed. In contrast to the closely homologous PKM1, which always occurs in a highly active
tetramer A tetramer () (''tetra-'', "four" + '' -mer'', "parts") is an oligomer formed from four monomers or subunits. The associated property is called ''tetramery''. An example from inorganic chemistry is titanium methoxide with the empirical formula ...
ic form and which is not
allosteric In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the p ...
ally regulated, PKM2 may occur in a tetrameric form but also in a
dimer Dimer may refer to: * Dimer (chemistry), a chemical structure formed from two similar sub-units ** Protein dimer, a protein quaternary structure ** d-dimer ** TH-dimer * Dimer model, an item in statistical mechanics, based on ''domino tiling'' * ...
ic form. The tetrameric form of PKM2 has a high affinity to its substrate phosphoenolpyruvate (PEP), and is highly active at physiological PEP concentrations. When PKM2 is mainly in the highly active tetrameric form, which is the case in differentiated tissues and most normal proliferating cells, glucose is converted to pyruvate under the production of energy. Meanwhile, the dimeric form of PKM2 is characterized by a low affinity to its substrate PEP and is nearly inactive at physiological PEP concentrations. Dimeric PKM2 produces little to no ATP in the conversion of PEP to pyruvate, making the net yield of ATP zero for glycolysis. When PKM2 is mainly in the less active dimeric form, which is the case in tumor cells, all glycolytic intermediates above pyruvate kinase accumulate and are channelled into synthetic processes, which branch off from glycolytic intermediates such as nucleic acid-, phospholipid-, and amino acid synthesis.
Nucleic acids Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic a ...
,
phospholipids Phospholipids are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typi ...
, and
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
are important cell building-blocks, which are greatly needed by highly proliferating cells, such as tumor cells. Due to the key position of pyruvate kinase within glycolysis, the tetramer:dimer ratio of PKM2 determines whether glucose carbons are converted to pyruvate and lactate under the production of energy (tetrameric form) or channelled into synthetic processes (dimeric form). However, even if PKM2 activity is low leading to the diversion of upstream intermediates to synthetic processes, pyruvate and lactate will still be made using carbon atoms from glucose and other metabolites through 86 pathways bypassing
pyruvate kinase Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. Pyruv ...
. These pyruvate kinase bypassing pathways are different from those participating in
gluconeogenesis Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In verte ...
. Interestingly, many of the pyruvate kinase bypassing pathways use metabolites that transit through
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
, highlighting the importance of mitochondria in cancer metabolism irrespective of
oxidative phosphorylation Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
. In tumor cells, PKM2 is mainly in the dimeric form and has, therefore, been termed Tumor M2-PK. The quantification of Tumor M2-PK in plasma and stool is a tool for early detection of tumors and follow-up studies during therapy. The dimerization of PKM2 in tumor cells is induced by direct interaction of PKM2 with different
oncoprotein An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
s (pp60v-src, HPV-16 E7, and A-Raf). The physiological function of the interaction between PKM2 and HERC1 as well as between PKM2 and PKCdelta is unknown). Due to the essential role of PKM2 in aerobic glycolysis (The Warburg effect) which is a dominant metabolic pathway used by cancer cells. Its overcome in this pathway in macrophages may lead to better outcome in experimental sepsis. Thus, PKM2 is a regulator of LPS- and tumor-induced
PD-L1 Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a protein that in humans is encoded by the ''CD274'' gene. Programmed death-ligand 1 (PD-L1) is a 40kDa type 1 transmembrane prote ...
expression on
macrophage Macrophages (; abbreviated MPhi, φ, MΦ or MP) are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris and foreign substances, which do not have proteins that ...
s and
dendritic cell A dendritic cell (DC) is an antigen-presenting cell (also known as an ''accessory cell'') of the mammalian immune system. A DC's main function is to process antigen material and present it on the cell surface to the T cells of the immune system ...
s as well as tumor cells. Studies involving the use of PKM2 activators have looked at promoting the conversion of dimeric PKM2 to its tetrameric form, hindering the growth of cancer cells. Furthermore, concurrent research is centered on targeting the tetrameric form of PKM2 with small-molecule activators, such as TEPP-46 and DASA-58, to increase its resistance to inhibition. However, the tetramer:dimer ratio of PKM2 is not stationary value. High levels of the glycolytic intermediate
fructose 1,6-bisphosphate Fructose 1,6-bisphosphate, known in older publications as Harden-Young ester, is fructose sugar phosphorylated on carbons 1 and 6 (i.e., is a fructosephosphate). The β-D-form of this compound is common in cells. Upon entering the cell, most glu ...
induce the re-association of the dimeric form of PKM2 to the tetrameric form. As a consequence, glucose is converted to pyruvate and lactate with the production of energy until fructose 1,6-bisphosphate levels drop below a critical value to allow dissociation to the dimeric form. This regulation is termed ''metabolic budget system''. Another activator of PKM2 is the amino acid
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
. The thyroid hormone 3,3´,5-triiodi-L-thyronine ( T3) binds to the
monomer A monomer ( ; ''mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called polymerization. Classification Chemis ...
ic form of PKM2 and prevents its association to the tetrameric form. In tumor cells, the increased rate of lactate production in the presence of oxygen is termed the Warburg effect. Genetic manipulation of cancer cells so that they produce adult PKM1 instead of PKM2 reverses the Warburg effect and reduces the growth rate of these modified cancer cells. Accordingly, cotransfection of NIH 3T3 cells with gag-A-Raf and a kinase dead mutant of PKM2 reduced colony whereas cotransfection with gag-A-Raf and
wild type The wild type (WT) is the phenotype of the typical form of a species as it occurs in nature. Originally, the wild type was conceptualized as a product of the standard "normal" allele at a locus, in contrast to that produced by a non-standard, " ...
PKM2 led to a doubling of focus formation. The dimeric form of PKM2 has been observed to have protein kinase activity in tumor cells. It is able to bind to and phosphorylate the histone H3 of chromatin in cancer cells, thereby having a role in the regulation of gene expression. This modification of histone H3 and the resulting involvement in gene expression regulation can be a cause of tumor cell proliferation. The pyruvate kinase activity of PKM2 can be promoted by SAICAR (succinylaminoimidazolecarboxamide ribose-5′-phosphate), an intermediate in purine biosynthesis. In cancer cells, glucose starvation leads to a rise in SAICAR levels and the subsequent stimulation of pyruvate kinase activity of PKM2. This allows for the completion of the glycolytic pathway to produce pyruvate and, therefore, survival under glucose deprivation. In addition, an abundance of SAICAR can modify glucose absorption and lactate production in cancer cells. However, it has been shown that SAICAR binding also sufficiently stimulates the protein kinase activity of PKM2 in tumor cells. In turn, the SAICAR-PKM2 complex can potentially phosphorylate a number of other protein kinases using PEP as the phosphate donor. Many of these proteins contribute to the regulation of cancer cell proliferation. Specifically, PKM2 can be a component in mitogen-activated protein kinase (MAPK) signaling, which is associated with increased cell proliferation if functioning improperly. This provides a potential link between SAICAR-activated PKM2 and cancer cell growth.


Natural mutations and carcinogenesis

Two
missense mutation In genetics, a missense mutation is a point mutation in which a single nucleotide change results in a codon that codes for a different amino acid. It is a type of nonsynonymous substitution. Missense mutations change amino acids, which in turn alt ...
s, H391Y and K422R, of PKM2 were found in cells from
Bloom syndrome Bloom syndrome (often abbreviated as BS in literature) is a rare autosomal recessive genetic disorder characterized by short stature, predisposition to the development of cancer, and genomic instability. BS is caused by mutations in the '' BLM'' g ...
patients prone to developing cancer. Results show that, despite the presence of mutations in the inter-subunit contact domain, the K422R and H391Y mutant proteins maintained their homotetrameric structure, similar to the wild-type protein, but showed a loss of activity of 75 and 20%, respectively. H391Y showed a 6-fold increase in affinity for its substrate phosphoenolpyruvate and behaved like a non-allosteric protein with compromised
cooperative binding Cooperative binding occurs in molecular binding systems containing more than one type, or species, of molecule and in which one of the partners is not mono-valent and can bind more than one molecule of the other species. In general, molecular bindi ...
. However, the affinity for phosphoenolpyruvate was lost significantly in K422R. Unlike K422R, H391Y showed enhanced thermal stability, stability over a range of pH values, a lesser effect of the allosteric inhibitor Phe, and resistance toward structural alteration upon binding of the activator (fructose 1,6-bisphosphate) and inhibitor (Phe). Both mutants showed a slight shift in the pH optimum from 7.4 to 7.0. The co-expression of homotetrameric wild type and mutant PKM2 in the cellular milieu resulting in the interaction between the two at the monomer level was substantiated further by in vitro experiments. The cross-monomer interaction significantly altered the oligomeric state of PKM2 by favoring dimerisation and heterotetramerization. In silico study provided an added support in showing that hetero-oligomerization was energetically favorable. The hetero-oligomeric populations of PKM2 showed altered activity and affinity, and their expression resulted in an increased growth rate of Escherichia coli as well as mammalian cells, along with an increased rate of
polyploidy Polyploidy is a condition in which the cells of an organism have more than two paired sets of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two complete sets of chromosomes, one fro ...
. These features are known to be essential to tumor progression. Further, cells stably expressing exogenous wild- or mutant-PKM2 (K422R or H391Y) or co-expressing both wild and mutant (PKM2-K422R or PKM2-H391Y), were assessed for cancer metabolism and tumorigenic potential. Cells co-expressing PKM2 and mutant (K422R or H391Y) showed significantly aggressive cancer metabolism, compared to cells expressing either wild or mutant PKM2 independently. A similar trend was observed for oxidative endurance, tumorigenic potential, cellular proliferation and tumor growth. These observations signify the dominant negative nature of these mutations. Remarkably, PKM2-H391Y co-expressed cells showed a maximal effect on all the studied parameters. Such a dominant negative impaired function of PKM2 in tumor development is not known; also evidencing for the first time the possible predisposition of BS patients with impaired PKM2 activity to cancer, and the importance of studying genetic variations in PKM2 in future to understand their relevance in cancer in general.


Regulatory circuits

Cancer cells are characterized by a reprogramming of energy metabolism. Over the last decade, understanding of the metabolic changes that occur in cancer has increased dramatically, and there is great interest in targeting metabolism for cancer therapy. PKM2 plays a key role in modulating glucose metabolism to support cell proliferation. PKM2, like other PK isoforms, catalyzes the last energy-generating step in glycolysis, but is unique in its capacity to be regulated. PKM2 is regulated on several cellular levels, including gene expression, alternative splicing and
post-translational modification In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translation (biolog ...
. In addition, PKM2 is regulated by key metabolic intermediates and interacts with more than twenty different proteins. Hence, this isoenzyme is an important regulator of glycolysis and additional functions in other novel roles that have recently emerged. Recent evidence indicates that intervening in the complex regulatory network of PKM2 has severe consequences on tumor cell proliferation, indicating the potential of this enzyme as a target for tumor therapy.


Bacterial pathogenesis

With the
yeast two-hybrid Two-hybrid screening (originally known as yeast two-hybrid system or Y2H) is a molecular biology technique used to discover protein–protein interactions (PPIs) and protein–DNA interactions by testing for physical interactions (such as bindi ...
system, gonococcal Opa proteins were found to interact with PKM2. The results suggest that direct molecular interaction with the host metabolic enzyme PKM2 is required for the acquisition of pyruvate and for gonococcal growth and survival.


Interactive pathway map


See also

*
Pyruvate kinase Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. Pyruv ...
* Tumor M2-PK *
Bloom syndrome Bloom syndrome (often abbreviated as BS in literature) is a rare autosomal recessive genetic disorder characterized by short stature, predisposition to the development of cancer, and genomic instability. BS is caused by mutations in the '' BLM'' g ...


References


External links

* * * {{Glycolysis enzymes Metabolism Enzymes