In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, orthogonality is the generalization of the geometric notion of ''
perpendicularity
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
'' to
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
of
bilinear form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linea ...
s.
Two elements and of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
with bilinear form
are orthogonal when
. Depending on the bilinear form, the vector space may contain
null vector
In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which .
In the theory of real bilinear forms, definite quadratic forms an ...
s, non-zero self-orthogonal vectors, in which case perpendicularity is replaced with
hyperbolic orthogonality
In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyp ...
.
In the case of
function space
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a ve ...
s, families of functions are used to form an orthogonal
basis, such as in the contexts of
orthogonal polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geom ...
,
orthogonal functions
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval (mathematics), interval as the domain of a function, domain, the bilinear form may be the ...
, and
combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
.
Definitions
* In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, two
Euclidean vector
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scal ...
s are orthogonal if they are
perpendicular
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
, ''i.e.'' they form a
right angle
In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
.
* Two
vectors and in an
inner product space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
are ''orthogonal'' if their inner product
is zero. This relationship is denoted
.
* A set of vectors in an inner product space is called pairwise orthogonal if each pairing of them is orthogonal. Such a set is called an orthogonal set (or orthogonal system). If the vectors are normalized, they form an
orthonormal system.
* An
orthogonal matrix
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.
One way to express this is
Q^\mathrm Q = Q Q^\mathrm = I,
where is the transpose of and is the identi ...
is a
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
whose column vectors are
orthonormal to each other.
* An
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite Dimension (linear algebra), dimension is a Basis (linear algebra), basis for V whose vectors are orthonormal, that is, they are all unit vec ...
is a
basis whose vectors are both orthogonal and normalized (they are
unit vector
In mathematics, a unit vector in a normed vector space is a Vector (mathematics and physics), vector (often a vector (geometry), spatial vector) of Norm (mathematics), length 1. A unit vector is often denoted by a lowercase letter with a circumfle ...
s).
* A
conformal linear transformation preserves angles and distance ratios, meaning that transforming orthogonal vectors by the same conformal linear transformation will keep those vectors orthogonal.
* Two
vector subspaces and
of an inner product space
are called orthogonal subspaces if each vector in
is orthogonal to each vector in
. The largest subspace of
that is orthogonal to a given subspace is its
orthogonal complement
In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W^\perp of all vectors in V that are orthogonal to every vector in W. I ...
.
* Given a
module and its dual
, an element
of
and an element
of
are ''orthogonal'' if their
natural pairing is zero, i.e.
. Two sets
and
are orthogonal if each element of
is orthogonal to each element of
.
* A
term rewriting system
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduc ...
is said to be
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
if it is left-linear and is non-ambiguous. Orthogonal term rewriting systems are
confluent.
In certain cases, the word ''normal'' is used to mean ''orthogonal'', particularly in the geometric sense as in the
normal to a surface. For example, the ''y''-axis is normal to the curve
at the origin. However, ''normal'' may also refer to the magnitude of a vector. In particular, a set is called
orthonormal (orthogonal plus normal) if it is an orthogonal set of
unit vector
In mathematics, a unit vector in a normed vector space is a Vector (mathematics and physics), vector (often a vector (geometry), spatial vector) of Norm (mathematics), length 1. A unit vector is often denoted by a lowercase letter with a circumfle ...
s. As a result, use of the term ''normal'' to mean "orthogonal" is often avoided. The word "normal" also has a different meaning in
probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
and
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
.
A vector space with a
bilinear form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linea ...
generalizes the case of an inner product. When the bilinear form applied to two vectors results in zero, then they are orthogonal. The case of a
pseudo-Euclidean plane uses the term
hyperbolic orthogonality
In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyp ...
. In the diagram, axes x′ and t′ are hyperbolic-orthogonal for any given
.
Euclidean vector spaces
In
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, two vectors are orthogonal
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
their
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
is zero, i.e. they make an angle of 90° (
radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s), or one of the vectors is zero. Hence orthogonality of vectors is an extension of the concept of
perpendicular
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
vectors to spaces of any dimension.
The
orthogonal complement
In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W^\perp of all vectors in V that are orthogonal to every vector in W. I ...
of a subspace is the space of all vectors that are orthogonal to every vector in the subspace. In a three-dimensional Euclidean vector space, the orthogonal complement of a
line through the origin is the
plane through the origin perpendicular to it, and vice versa.
Note that the geometric concept of two planes being perpendicular does not correspond to the orthogonal complement, since in three dimensions a pair of vectors, one from each of a pair of perpendicular planes, might meet at any angle.
In four-dimensional Euclidean space, the orthogonal complement of a line is a
hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
and vice versa, and that of a plane is a plane.
Orthogonal functions
By using
integral calculus
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Int ...
, it is common to use the following to define the
inner product
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
of two
functions and
with respect to a nonnegative
weight function over an interval
:
:
In simple cases,
.
We say that functions
and
are orthogonal if their inner product (equivalently, the value of this integral) is zero:
:
Orthogonality of two functions with respect to one inner product does not imply orthogonality with respect to another inner product.
We write the
norm with respect to this inner product as
:
The members of a set of functions
are ''orthogonal'' with respect to
on the interval
if
:
The members of such a set of functions are ''orthonormal'' with respect to
on the interval
if
:
where
:
is the
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
.
In other words, every pair of them (excluding pairing of a function with itself) is orthogonal, and the norm of each is 1. See in particular the
orthogonal polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geom ...
.
Examples
* The vectors
are orthogonal to each other, since
and
.
* The vectors
and
are orthogonal to each other. The dot product of these vectors is zero. We can then make the generalization to consider the vectors in
:
for some positive integer
, and for
, these vectors are orthogonal, for example
,
,
are orthogonal.
* The functions
and
are orthogonal with respect to a unit weight function on the interval from −1 to 1:
* The functions
are orthogonal with respect to
Riemann integration on the intervals