Conformal Linear Transformation
A conformal linear transformation, also called a homogeneous similarity transformation or homogeneous similitude, is a similarity transformation of a Euclidean or pseudo-Euclidean vector space which fixes the origin. It can be written as the composition of an orthogonal transformation (an origin-preserving rigid transformation) with a uniform scaling (dilation). All similarity transformations (which globally preserve the shape but not necessarily the size of geometric figures) are also conformal (locally preserve shape). Similarity transformations which fix the origin also preserve scalar–vector multiplication and vector addition, making them linear transformations. Every origin-fixing reflection or dilation is a conformal linear transformation, as is any composition of these basic transformations, including rotations and improper rotations and most generally similarity transformations. However, shear transformations and non-uniform scaling are not. Conformal linear transforma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Similarity (geometry)
In Euclidean geometry, two objects are similar if they have the same shape, or one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other. For example, all circles are similar to each other, all squares are similar to each other, and all equilateral triangles are similar to each other. On the other hand, ellipses are not all similar to each other, rectangles are not all similar to each other, and isosceles triangles are not all similar to each other. If two angles of a triangle have measures equal to the measures of two angles of another triangle, then the triangles are similar. Correspo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Basis (linear Algebra)
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transformation Matrix
In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation mapping \mathbb^n to \mathbb^m and \mathbf x is a column vector with n entries, then T( \mathbf x ) = A \mathbf x for some m \times n matrix A, called the transformation matrix of T. Note that A has m rows and n columns, whereas the transformation T is from \mathbb^n to \mathbb^m. There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors. Uses Matrices allow arbitrary linear transformations to be displayed in a consistent format, suitable for computation. This also allows transformations to be composed easily (by multiplying their matrices). Linear transformations are not the only ones that can be represented by matrices. Some transformations that are non-linear on an n-dimensional Euclidean space R''n'' can be represented as linear transformations on the ''n''+1-dimensional space R''n''+1. These include both af ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartan–Dieudonné Theorem
In mathematics, the Cartan–Dieudonné theorem, named after Élie Cartan and Jean Dieudonné, establishes that every orthogonal transformation in an ''n''- dimensional symmetric bilinear space can be described as the composition of at most ''n'' reflections. The notion of a symmetric bilinear space is a generalization of Euclidean space whose structure is defined by a symmetric bilinear form (which need not be positive definite, so is not necessarily an inner product – for instance, a pseudo-Euclidean space is also a symmetric bilinear space). The orthogonal transformations in the space are those automorphisms which preserve the value of the bilinear form between every pair of vectors; in Euclidean space, this corresponds to preserving distances and angles. These orthogonal transformations form a group under composition, called the orthogonal group. For example, in the two-dimensional Euclidean plane, every orthogonal transformation is either a reflection across a line ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthogonality (mathematics)
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity'' to the linear algebra of bilinear forms. Two elements ''u'' and ''v'' of a vector space with bilinear form ''B'' are orthogonal when . Depending on the bilinear form, the vector space may contain nonzero self-orthogonal vectors. In the case of function spaces, families of orthogonal functions are used to form a basis. The concept has been used in the context of orthogonal functions, orthogonal polynomials, and combinatorics. Definitions * In geometry, two Euclidean vectors are orthogonal if they are perpendicular, ''i.e.'', they form a right angle. * Two vectors, ''x'' and ''y'', in an inner product space, ''V'', are ''orthogonal'' if their inner product \langle x, y \rangle is zero. This relationship is denoted x \perp y. *An orthogonal matrix is a matrix whose column vectors are orthonormal to each other. * Two vector subspaces, ''A'' and ''B'', of an inner product space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthonormal Basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space \R^n is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for \R^n arises in this fashion. For a general inner product space V, an orthonormal basis can be used to define normalized orthogonal coordinates on V. Under these coordinates, the inner product becomes a dot product of vectors. Thus the presence of an orthonormal basis reduces the study of a finite-dimensional inner product space to the study of \R^n under dot product. Every finite-dimensional inner product space has an orthonormal basis, wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conformal Group
In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space. Several specific conformal groups are particularly important: * The conformal orthogonal group. If ''V'' is a vector space with a quadratic form ''Q'', then the conformal orthogonal group is the group of linear transformations ''T'' of ''V'' for which there exists a scalar ''λ'' such that for all ''x'' in ''V'' *:Q(Tx) = \lambda^2 Q(x) :For a definite quadratic form, the conformal orthogonal group is equal to the orthogonal group times the group of dilations. * The conformal group of the sphere is generated by the inversions in circles. This group is also known as the Möbius group. * In Euclidean space E''n'', , the conformal group is generated by inversions in hyperspheres. * In a pseudo-Euclidean space E''p'',''q'', the conformal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Möbius Transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad'' − ''bc'' ≠ 0. Geometrically, a Möbius transformation can be obtained by first performing stereographic projection from the plane to the unit two-sphere, rotating and moving the sphere to a new location and orientation in space, and then performing stereographic projection (from the new position of the sphere) to the plane. These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group called the Möbius group, which is the projective linear group PGL(2,C). Together with its subgroups, it has numerous applications in mathematics and physics. Möbius tran ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Covering Group
In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous group homomorphism. The map ''p'' is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which ''H'' has index 2 in ''G''; examples include the spin groups, pin groups, and metaplectic groups. Roughly explained, saying that for example the metaplectic group Mp2''n'' is a ''double cover'' of the symplectic group Sp2''n'' means that there are always two elements in the metaplectic group representing one element in the symplectic group. Properties Let ''G'' be a covering group of ''H''. The kernel ''K'' of the covering homomorphism is just the fiber over the identity in ''H'' and is a discrete normal subgroup of ''G''. The kernel ''K'' is closed in ''G'' if and only if ''G'' is Hausdorff (and if and only if ''H'' is Hausdorff). Going in t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Algebra
In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions. The geometric product was first briefly mentioned by Hermann Grassmann, who was chiefly interested in developing the closely related exterior algebra. In 1878, William Kingdon Clifford greatly expanded on Grassmann's work to form what are now usually called Clifford algebras in his honor (although Clifford himself chose to call them "geometric algebras"). Clifford defined the Clifford algebra and its product as a unification of the Grassmann algebra and Hamilton's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |