In
mathematics, an Oper is a
principal connection, or in more elementary terms a type of
differential operator. They were first defined and used by
Vladimir Drinfeld
Vladimir Gershonovich Drinfeld ( uk, Володи́мир Ге́ршонович Дрінфельд; russian: Влади́мир Ге́ршонович Дри́нфельд; born February 14, 1954), surname also romanized as Drinfel'd, is a renowne ...
and Vladimir Sokolov
to study how the
KdV equation and related integrable PDEs correspond to algebraic structures known as
Kac–Moody algebra
In mathematics, a Kac–Moody algebra (named for Victor Kac and Robert Moody, who independently and simultaneously discovered them in 1968) is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a ...
s. Their modern formulation is due to Drinfeld and
Alexander Beilinson
Alexander A. Beilinson (born 1957) is the David and Mary Winton Green University professor at the University of Chicago and works on mathematics. His research has spanned representation theory, algebraic geometry and mathematical physics. In 1 ...
.
History
Opers were first defined, although not named, in a 1981 Russian paper by Drinfeld and Sokolov on ''Equations of Korteweg–de Vries type, and simple Lie algebras''. They were later generalized by Drinfeld and Beilinson in 1993, later published as an e-print in 2005.
Formulation
Abstract
Let
be a
connected
Connected may refer to:
Film and television
* ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular''
* '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film
* ''Connected'' (2015 TV ...
reductive group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direc ...
over the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by th ...
, with a distinguished
Borel subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgrou ...
. Set