HOME

TheInfoList



OR:

An ocular prosthesis, artificial eye or glass eye is a type of craniofacial prosthesis that replaces an absent natural
eye An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system. In higher organisms, the ey ...
following an enucleation, evisceration, or orbital exenteration. Someone with an ocular prosthesis is altogether blind on the affected side and has monocular (one sided)
vision Vision, Visions, or The Vision may refer to: Perception Optical perception * Visual perception, the sense of sight * Visual system, the physical mechanism of eyesight * Computer vision, a field dealing with how computers can be made to gain und ...
. The
prosthesis In medicine, a prosthesis (: prostheses; from ), or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through physical trauma, disease, or a condition present at birth (Congenital, congenital disord ...
fits over an orbital implant and under the
eyelid An eyelid ( ) is a thin fold of skin that covers and protects an eye. The levator palpebrae superioris muscle retracts the eyelid, exposing the cornea to the outside, giving vision. This can be either voluntarily or involuntarily. "Palpebral ...
s. The ocular prosthesis roughly takes the shape of a convex shell and is made of medical grade plastic acrylic. A few ocular prostheses today are made of
cryolite Cryolite ( Na3 Al F6, sodium hexafluoroaluminate) is a rare mineral identified with the once-large deposit at Ivittuut on the west coast of Greenland, mined commercially until 1987. It is used in the reduction ("smelting") of aluminium, in pest ...
glass. A variant of the ocular prosthesis is a very thin hard shell known as a
sclera The sclera, also known as the white of the eye or, in older literature, as the tunica albuginea oculi, is the opaque, fibrous, protective outer layer of the eye containing mainly collagen and some crucial elastic fiber. In the development of t ...
l shell which can be worn over a damaged or eviscerated eye. Makers of ocular prosthetics are known as
ocularist An ocularist specializes in the fabrication and fitting of ocular prostheses for people who have lost an eye or eyes due to trauma or illness.{{Cite journal , last1=Khandekar , first1=Rajiv , last2=Changal , first2=Nusrat , last3=AlRasheed , first3 ...
s. Visual prosthesis are currently in research which could provide vision to the artificial eye.


History

The earliest known evidence of the use of ocular prosthesis is that of a woman found in Shahr-I Sokhta, Iran dating back to 2900–2800 BC. It has a hemispherical form and a diameter of just over 2.5 cm (1 inch). It consists of very light material, probably bitumen paste. The surface of the artificial eye is covered with a thin layer of gold, engraved with a central circle (representing the iris) and gold lines patterned like sun rays. On both sides of the eye are drilled tiny holes, through which a golden thread could hold the eyeball in place. Since microscopic research has shown that the eye socket showed clear imprints of the golden thread, the eyeball must have been worn during her lifetime. In addition to this, an early Hebrew text references a woman who wore an artificial eye made of gold. Roman and Egyptian priests are known to have produced artificial eyes as early as the fifth century BC constructed from painted clay attached to cloth and worn outside the socket.Frequently asked questions
American Society of Ocularists
The first in-socket artificial eyes were made of gold with colored enamel, later evolving into the use of glass (thus the name "glass eye") by the Venetians in the later part of the sixteenth century. These were crude, uncomfortable, and fragile and the production methodology remained known only to Venetians until the end of the 18th century, when Parisians took over as the center for artificial eye-making. But the center shifted again, this time to Germany because of their superior glass blowing techniques. Shortly following the introduction of the art of glass eye-making to the United States, German goods became unavailable because of World War II. As a result, the US instead made artificial eyes from acrylic plastic. Production of modern ocular prosthetics has expanded from simply using glass into many different types of materials. In the United States, most custom ocular prostheses are fabricated using PMMA (polymethyl methacrylate), or acrylic. In some countries, Germany especially, prostheses are still most commonly made from glass.


Limits of realism

Ocularist surgeons have always worked together to make artificial eyes look more realistic. For decades, all efforts and investments to improve the appearance of artificial eyes have been dampened by the immobility of the pupil. One solution to this problem has been demonstrated recently in a device based on an LCD which simulates the pupil size as a function of the ambient light.


Implant types and chemical construction

There are many different types of implants, classification ranging from shape (spherical vs egg (oval) shaped), stock vs custom, porous vs nonporous, specific chemical make-up, and the presence of a peg or motility post. The most basic simplification can be to divide implant types into two main groups: non-integrated (non-porous) and integrated (porous).


Nonintegrated implants

Though there is evidence that ocular implants have been around for thousands of years, modern nonintegrated spherical intraconal implants came into existence around 1976 (not just glass eyes). Nonintegrated implants contain no unique apparatus for attachments to the
extraocular muscles The extraocular muscles, or extrinsic ocular muscles, are the seven extrinsic muscles of the eye in human eye, humans and other animals. Six of the extraocular muscles, the four recti muscles, and the superior oblique muscle, superior and inferior ...
and do not allow in-growth of organic tissue into their inorganic substance. Such implants have no direct attachment to the ocular prosthesis. Usually, these implants are covered with a material that permits fixation of the extraocular recti muscles, such as donor
sclera The sclera, also known as the white of the eye or, in older literature, as the tunica albuginea oculi, is the opaque, fibrous, protective outer layer of the eye containing mainly collagen and some crucial elastic fiber. In the development of t ...
or polyester gauze which improves implant motility, but does not allow for direct mechanical coupling between the implant and the artificial eye. Non-integrated implants include the acrylic (PMMA), glass, and silicone spheres.


Polymethyl methacrylate (PMMA) (acrylic)

Polymethyl methacrylate (PMMA), commonly known as acrylic, is a transparent thermoplastic available for use as ocular prosthesis, replacement intraocular lenses when the original lens has been removed in the treatment of cataracts and has historically been used as hard contact lenses. PMMA has a good degree of compatibility with human tissue, much more so than glass. Although various materials have been used to make nonintegrated implants in the past, polymethyl methacrylate is one of the implants of choice.


Integrated implants (porous)

The porous nature of integrated implants allows fibrovascular ingrowth throughout the implant and thus also insertion of pegs or posts. Because direct mechanical coupling is thought to improve artificial eye motility, attempts have been made to develop so-called 'integrated implants' that are directly connected to the artificial eye. Historically, implants that directly attached to the prosthesis were unsuccessful because of chronic inflammation or infection arising from the exposed nonporous implant material. This led to the development of quasi-integrated implants with a specially designed anterior surface that allegedly better transferred implant motility to the artificial eye through the closed
conjunctiva In the anatomy of the eye, the conjunctiva (: conjunctivae) is a thin mucous membrane that lines the inside of the eyelids and covers the sclera (the white of the eye). It is composed of non-keratinized, stratified squamous epithelium with gobl ...
and
Tenon's capsule Tenon's capsule (), also known as the Tenon capsule, fascial sheath of the eyeball () or the fascia bulbi, is a thin membrane which envelops the eyeball from the optic nerve to the corneal limbus, separating it from the orbital fat and forming a ...
. In 1985, the problems associated with integrated implants were thought to be largely solved with the introduction of spherical implants made of porous calcium hydroxyapatite. This material allows for fibrovascular ingrowth within several months. Porous enucleation implants currently are fabricated from a variety of materials including natural and synthetic
hydroxyapatite Hydroxyapatite (International Mineralogical Association, IMA name: hydroxylapatite) (Hap, HAp, or HA) is a naturally occurring mineral form of calcium apatite with the Chemical formula, formula , often written to denote that the Crystal struc ...
,
aluminium oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several Aluminium oxide (compounds), aluminium oxides, and specifically identified as alum ...
, and
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bott ...
. The surgeon can alter the contour of porous implants before insertion, and it is also possible to modify the contour in situ, although this is sometimes difficult.


Hydroxyapatite (HA)

Hydroxyapatite implants are spherical and made in a variety of sizes and different materials (coralline/synthetic). Since their introduction in 1989 when an implant made from hydroxyapatite received Food and Drug Administration approval, spherical hydroxyapatite implants have gained widespread popularity as an enucleation implant and was at one point the most commonly used orbital implant in the United States. The porous nature of this material allows fibrovascular ingrowth throughout the implant and permits insertion of a coupling device (PEG) with reduced risk of inflammation or infection associated with earlier types of exposed integrated implants. Hydroxyapatite is limited to preformed (stock) spheres (for enucleation) or granules (for building up defects). One main disadvantage of HA is that it needs to be covered with exogenous material, such as sclera,
polyethylene terephthalate Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in synthetic fibre, fibres for clothing, packaging, conta ...
, or
vicryl Vicryl (polyglactin 910) is an absorbable, synthetic, usually braided surgical suture, suture, manufactured by Ethicon Inc., a subsidiary of Johnson and Johnson. A monofilament version is also made for use in Ophthalmology, ophthalmic practice. ...
mesh (which has the disadvantage of creating a rough implant tissue interface that can lead to technical difficulties in implantation and subsequent erosion of overlying tissue with the end stage being extrusion), as direct suturing is not possible for muscle attachment. Scleral covering carries with it the risk of transmission of infection, inflammation, and rejection. A 2008 study showed that HA has a more rapid rate of fibrovascularization than MEDPOR, a high-density porous polyethylene implant manufactured from linear high-density polyethylene.


Porous polyethylene (PP)

Development in polymer chemistry has allowed introduction of newer biocompatible material such as porous polyethylene (PP) to be introduced into the field of orbital implant surgery. Porous polyethylene enucleation implants have been used since at least 1989. It is available in dozens of prefabricated spherical and non-spherical shapes and in different sizes or plain blocks for individualized intraoperative customizing. The material is firm but malleable and allows direct suturing of muscles to implant without wrapping or extra steps. Additionally, the smooth surface is less abrasive and irritating than other materials used for similar purposes. Polyethylene also becomes vascularized, allowing placement of a titanium motility post that joins the implant to the prosthesis in the same way that the peg is used for hydroxyapatite implants. PP has been shown to have a good outcome, and in 2004, it was the most commonly used orbital implant in the United States. Porous polyethylene fulfills several criteria for a successful implant, including little propensity to migrate and restoration of defect in an anatomic fashion; it is readily available, cost-effective, and can be easily modified or custom-fit for each defect. The PP implant does not require to be covered and therefore avoids some of the problems associated with hydroxyapatite implants.


Bioceramic

Bioceramic prosthetics are made of aluminium oxide (). Aluminium oxide is a ceramic biomaterial that has been used for more than 35 years in the orthopedic and dental fields for a variety of prosthetic applications because of its low friction, durability, stability, and inertness. Aluminium oxide ocular implants can be obtained in spherical and non-spherical (egg-shaped) shapes and in different sizes for use in the anophthalmic socket. It received US Food and Drug Administration approval in April 2000 and was approved by Health and Welfare, Canada, in February 2001. Aluminium oxide has previously been shown to be more biocompatible than HA in cell culture studies and has been suggested as the standard reference material when biocompatibility studies are required to investigate new products. The rate of exposure previously associated with the bioceramic implant (2%) was less than most reports on the HA or porous polyethylene implant (0% to 50%).


Conical orbital implant (COI) and multipurpose conical orbital implant (MCOI)

The safe and effective sphere (still popular and easy to use) was supplemented with the pyramid or COI implant. The COI has unique design elements that have been incorporated into an overall conical shape, including a flat anterior surface, superior projection and preformed channels for the rectus muscles. 5-0 Vicryl suture needles can be passed with slight difficulty straight through the implant to be tied on the anterior surface. In addition, this implant features a slightly recessed slot for the superior rectus and a protrusion to fill the superior fornix. As of 2005 the newest model is the multipurpose conical orbital implant (MCOI), which was designed to address the issues of the postoperative anophthalmic orbit being at risk for the development of socket abnormalities including enophthalmos, retraction of the upper eyelid, deepening of the superior sulcus, backward tilt of the prothesis, and stretching of the lower eyelid after evisceration or enucleation. These problems are generally thought to be secondary to orbital volume deficiencies which is also addressed by MCOIs. The conical shape of the MCOI more closely matches the anatomic shape of the orbit than a spherical implant. The wider anterior portion, combined with the narrower and longer posterior portion, allows for a more complete and natural replacement of the lost orbital volume. This shape reduces the risk of superior sulcus deformity and puts more volume within the muscle cone. Muscles can be placed at any location the surgeon desires with these implants. This is advantageous for cases of damaged or lost muscles after trauma, and the remaining muscles are transposed to improve postoperative motility. In anticipation of future peg placement there is a diameter flattened surface, which eliminates the need to shave a flat anterior surface prior to peg placement. Both implants (COI and MCOI) are composed of interconnecting channels that allow ingrowth of host connective tissue. Complete implant vascularization reduces the risk of infection, extrusion, and other complications associated with nonintegrated implants. Additionally, both implants produce superior motility and postoperative cosmesis.


Pegged (motility post) implants

In hydroxyapatite implants, a secondary procedure can insert an externalized, round-headed peg or screw into the implant. The prosthesis is modified to accommodate the peg, creating a ball-and-socket joint. After fibrovascular ingrowth is completed, a small hole can be drilled into the anterior surface of the implant. After conjunctivalization of this hole, it can be fitted with a peg with a rounded top that fits into a corresponding dimple at the posterior surface of the artificial eye. This peg thus directly transfers implant motility to the artificial eye. However, the motility peg is mounted in a minority of patients. This may partially be due to problems associated with peg placement, whereas hydroxyapatite implants are assumed to yield superior artificial eye motility even without the peg. Polyethylene also becomes vascularized, allowing placement of a titanium motility post that joins the implant to the prosthesis in the same way that the peg is used for hydroxyapatite implants.


Implant movement

Implant and prosthesis movement are important aspects of the overall cosmetic appearance after enucleation, and are essential to the objective of crafting a lifelike eye similar in all aspects to the normal fellow eye. There are several theories of improved eye movement, such as using integrating prosthetic material, pegging the implant, covering the implant (e.g. with scleral tissue), or suturing the eye muscles directly to the prosthetic implant. The efficiency of transmitting movement from the implant to the prosthesis determines the degree of prosthetic motility. Movement is transmitted from traditional nonporous spherical implants through the surface tension at the conjunctival–prosthetic interface and movement of the fornices. Quasi-integrated implants have irregularly shaped surfaces that create an indirect coupling mechanism between the implant and prosthesis that imparts greater movement to the prosthesis. Directly integrating the implant to the prosthesis through an externalized coupling mechanism would be expected to improve motility further. Despite the reasoning stating that hydroxyapatite orbital implants without a motility peg would yield a superior artificial eye motility, when similar surgical techniques are used, unpegged porous (hydroxyapatite) enucleation implants and donor sclera-covered nonporous (acrylic) spherical enucleation implants yield comparable artificial eye motility. In two studies, there were no differences in maximum amplitude between hydroxyapatite and acrylic or silicone spherical enucleation implants, thus indicating that the implant material itself may not have a bearing on implant movement as long as the muscles are attached directly or indirectly to the implant and the implant is not pegged. The motility of a nonintegrated artificial eye may be caused by at least two forces: # The rubbing force between the posterior surface of the artificial eye and the conjunctiva that covers the implant may cause the artificial eye to move. Because this force is likely to be approximately equal in all directions, it would cause comparable horizontal and vertical artificial eye amplitudes. # An artificial eye usually fits snugly in the conjunctival space (possibly not in the superior fornix). Therefore, any movement of the conjunctival fornices will cause a similar movement of the artificial eye, whereas lack of movement of the fornices will restrict its motility. Imbrication of the rectus muscles over a nonintegrated implant traditionally was thought to impart movement to the implant and prosthesis. Like a ball-and-socket joint, when the implant moves, the prosthesis moves. However, because the so-called ball and socket are separated by layers of Tenon's capsule, imbricated muscles, and conjunctiva, the mechanical efficiency of transmission of movement from the implant to the prosthesis is suboptimal. Moreover, the concern is that imbrication of the recti over nonintegrated implants actually can result in implant migration. The recent myoconjuctival technique of enucleation is an alternative to muscle imbrication. Although it is generally accepted that integrating the prosthesis to a porous implant with peg insertion enhances prosthetic movement, there is little available evidence in the literature that documents the degree of improvement. In addition to this, although the porous implants have been reported to offer improved implant movement, these are more expensive and intrusive, require wrapping and subsequent imaging to determine vascularization and pegging to provide for better transmission of implant movement to the prosthesis, and are prone to implant exposure. Age and size of the implant may also affect the motility, since in a study comparing patients with hydroxyapatite implants and patients with nonporous implants, the implant movement appeared to decrease with age in both groups. This study also demonstrated improved movement of larger implants irrespective of material.


Surgical procedure

Enucleation and orbital implantation surgery follows these steps: * Anesthesia * Conjunctival peritomy * Separation of the anterior Tenon's fascia from the sclera * Pass sutures through rectus muscles * Rectus muscles disinserted from the globe * Rotate and elevate the globe * Open Tenon's capsule to visualize optic nerve * Cauterize necessary blood vessels * Divide the nerve * Remove the eye * Hemostasis is achieved with either cautery or digital pressure * Insert orbital implant. * If necessary (hydroxyapatite) cover the implant with wrapping material before * Attach the muscle (if possible) either directly (PP) or indirectly (HA) to implant. * Create fenestrations in wrapping material if necessary * For HA implants drill 1 mm holes as muscle insertion site * Draw Tenon's fascia over implant * Close Tenon's facia in one or two layers * Suture conjunctiva * Insert temporary ocular conformer until prosthesis is received (4–8 weeks later) * After implant vascularization, an optional secondary procedure can be done to place a couple peg or post. Also under anesthesia: * Create conjunctival incision at the peg insertion site * Create hole into implant to insert peg or post * Modify prosthesis to receive peg/post. The surgery is done under general anesthesia with the addition of extra subconjunctival and/or retrobulbar anesthetics injected locally in some cases. The following is a description of the surgical procedure performed by Custer ''et al.'':


Aftermath of surgical procedures

Regardless of the procedure, a type of ocular prosthesis is always needed afterwards. The surgeon will insert a temporary prosthesis at the end of the surgery, known as a stock eye, and refer the patient to an
ocularist An ocularist specializes in the fabrication and fitting of ocular prostheses for people who have lost an eye or eyes due to trauma or illness.{{Cite journal , last1=Khandekar , first1=Rajiv , last2=Changal , first2=Nusrat , last3=AlRasheed , first3 ...
, who is not a medical doctor, but board certified ocularist by the American Society of Ocularists. The process of making an ocular prosthesis, or a custom eye, will begin, usually six weeks after the surgical procedure, and it typically will take up to three visits before the final fitting of the prosthesis. In most cases, the patient will be fitted during the first visit, return for the hand-painting of the prosthesis, and finally come back for the final fitting. The methods used to fit, shape, and paint the prosthesis often vary to suit both ocularist and patient needs. Living with an ocular prosthesis requires care, but oftentimes patients who have had incurable eye disorders, such as micropthalmia, anophtalmia or
retinoblastoma Retinoblastoma (Rb) is a rare form of cancer that rapidly develops from the immature cells of a retina, the light-detecting tissue of the eye. It is the most common primary malignant intraocular cancer in children, and 80% of retinoblastoma cas ...
, achieve a better quality of life with their prostheses. It is generally recommended to leave the prosthesis in the socket as much as possible, though it may require some cleaning and lubrication, as well as regular polishing and check-ups with ocularists.


Notable people with prosthetic eyes

*
Bhumibol Adulyadej Bhumibol Adulyadej (5 December 192713 October 2016), titled Rama IX, was King of Thailand from 1946 until Death and funeral of Bhumibol Adulyadej, his death in 2016. His reign of 70 years and 126 days is the longest of any List of Thai mo ...
– King of Thailand; lost his eye in a 1948 car crash ''(right eye)'' * Baz Bastien – Canadian ice hockey player, coach ''(right eye)'' * Mokhtar Belmokhtar – Algerian smuggler, kidnapper, weapons dealer, and terrorist; lost his eye mishandling explosives ''(left eye)'' * Sammy Davis Jr. – American entertainer ''(left eye)'' *
Peter Falk Peter Michael Falk (September 16, 1927 – June 23, 2011) was an American film and television actor. He is best known for his role as Columbo (character), Lieutenant Columbo on the NBC/American Broadcasting Company, ABC series ''Columbo'' (196 ...
– American actor ''(right eye)'' *
Tex Avery Frederick Bean "Tex" Avery (; February 26, 1908 – August 26, 1980) was an American animator, cartoonist, animation director, director, and voice actor. He was known for directing and producing animated cartoons during the golden age of America ...
– American animation director ''(left eye)'' *
Ry Cooder Ryland Peter Cooder (born March 15, 1947) is an American musician, songwriter, film score composer, record producer, and writer. He is a multi-instrumentalist but is best known for his slide guitar work, his interest in traditional music, and h ...
– American musician best known for his slide guitar work ''(left eye)''Entry for "Ry Cooder", in ''The
Rolling Stone ''Rolling Stone'' is an American monthly magazine that focuses on music, politics, and popular culture. It was founded in San Francisco, California, in 1967 by Jann Wenner and the music critic Ralph J. Gleason. The magazine was first known fo ...
Encyclopedia of Rock & Roll'', Touchstone (revised, updated edition); November 8, 2001;
*
Nick Griffin Nicholas John Griffin (born 1 March 1959) is a British far-right politician who was chairman of the British National Party (BNP) from 1999 to 2014, and a Member of the European Parliament (MEP) for North West England from 2009 to 2014. Follow ...
– British National Party leader ''(left eye)'' * Jay Horwitz (born 1945), American executive for the New York Mets baseball team ''(right eye)'' *
Leo McKern Reginald "Leo" McKern (16 March 1920 – 23 July 2002) was an Australian actor who appeared in numerous British, Australian and American television programmes and films, and in more than 200 stage roles. His notable roles include Clang in ...
– Actor ''(left eye)'' * Carl Ouellet – Canadian professional wrestler ''(right eye)'' *
Claus Schenk Graf von Stauffenberg Claus Philipp Maria Justinian Schenk Graf von Stauffenberg (; 15 November 1907 – 21 July 1944) was a German German Army (1935–1945), army officer who is best known for his 20 July plot, failed attempt on 20 July 1944 to assassinate Adolf ...
– German career army officer and resistance leader ''(left eye)'' * Robert Thurman – Writer ''(left eye)'' * Mo Udall – American politician ''(right eye)'' * Fetty Wap - American rapper *
Gordon Brown James Gordon Brown (born 20 February 1951) is a British politician who served as Prime Minister of the United Kingdom and Leader of the Labour Party (UK), Leader of the Labour Party from 2007 to 2010. Previously, he was Chancellor of the Ex ...
- Former
Prime Minister of the United Kingdom The prime minister of the United Kingdom is the head of government of the United Kingdom. The prime minister Advice (constitutional law), advises the Monarchy of the United Kingdom, sovereign on the exercise of much of the Royal prerogative ...
(''left eye'') * Helmut Marko - Formula 1 racing driver (''left eye'') * Leo Fender - Inventor *
Jeff Healey Norman Jeffrey Healey (March 25, 1966 – March 2, 2008) was a Canadian blues, rock and jazz guitarist, singer and songwriter who attained popularity in the 1980s and 1990s. He reached No. 5 on the U.S. ''Billboard'' Hot 100 chart with " Ang ...
- Guitarist


References


External links


Mind Map: Adjusting and Adapting to Eye Loss

Personal stories about having an artificial eye





Ocular Prosthetics

Eyeform Opticians Ocular Prosthesis information

A FourDoc (short on-line documentary) about last glass eye maker in England.

How Prosthetic Eyes are made



Introduction to the Self-Lubricating Prosthesis
{{DEFAULTSORT:Ocular Prosthesis Implants (medicine) Medical terminology Ophthalmology Prosthetics