
Nucleoside-diphosphate kinases (NDPKs, also NDP kinase, (poly)nucleotide kinases and nucleoside diphosphokinases) are
enzymes that
catalyze the exchange of terminal phosphate between different
nucleoside diphosphates (NDP) and
triphosphates (NTP) in a reversible manner to produce
nucleotide triphosphates
A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are ch ...
. Many NDP serve as acceptor while NTP are donors of phosphate group. The general reaction via ping-pong mechanism is as follows: XDP + YTP ←→ XTP + YDP (X and Y each represent different nitrogenous base). NDPK activities maintain an equilibrium between the concentrations of different nucleoside triphosphates such as, for example, when
guanosine triphosphate (GTP) produced in the
citric acid (Krebs) cycle is converted to
adenosine triphosphate (ATP). Other activities include cell proliferation, differentiation and development,
signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
,
G protein-coupled receptor,
endocytosis
Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. E ...
, and
gene expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
.
Structure
NDPK are homo hexameric proteins made up of monomers approximately 152 amino acids long with a theoretical weight of 17.17KDa. The complex is found in
mitochondria
A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
and in the soluble cytoplasm of cells.
Function
NDPK are found in all cells, displaying not much specificity towards the types of
nucleoside bases and are capable of accepting
nucleotides and
deoxyribonucleotide
A deoxyribonucleotide is a nucleotide that contains deoxyribose. They are the monomeric units of the informational biopolymer, deoxyribonucleic acid ( DNA). Each deoxyribonucleotide comprises three parts: a deoxyribose sugar (monosaccharide), a ni ...
s as substrates or donors.
Therefore, NDPK is the source of RNA and DNA precursors, except ATP.
NDPK utilize specific enzyme kinetics for multi-substrate reaction, namely
ping-pong mechanism
Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in t ...
. A ping-pong mechanism integrates
phosphorylation
In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
of a
histidine residue by transferring terminal phosphate group (γ-phosphate) from ATP to NDP β-phosphate in order to produce a NTP, and NDPK catalyzes such reversible reactions. NTP phosphorylates a histidine, which in turn phosphorylates NDP. NDPK are involved in the synthesis of
nucleoside triphosphate
A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are cha ...
s (NTP), such as
guanosine triphosphate (GTP),
cytidine triphosphate
Cytidine triphosphate (CTP) is a pyrimidine nucleoside triphosphate. CTP, much like ATP, consists of a ribose sugar, and three phosphate groups. The major difference between the two molecules is the base used, which in CTP is cytosine.
CTP is ...
(CTP) and
uridine triphosphate
Uridine-5′-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Its main role is as substra ...
(UTP), thymidine triphosphate (TTP).

Behind this apparently simple reaction is a multistep mechanism. The key steps of transphosphorylation are as follows:
* NDPK binds to a NTP1
* A phosphoryl group from NTP1 is transferred to His in active site of NDPK
* Phosphoenzyme intermediate is formed
* Initially bound NDP1 is released from NDPK bringing in new NDP2
* Phosphoryl group is transferred from NDPK-His to NDP2 or dNDP2, creating a bound NTP2
* NDPK releases the new NTP2
Each step is part of a reversible process, such that the multistep equilibrium is of the following form.
:NDPK + NTP ↔ NDPK~NTP ↔ NDPK-P~NDP ↔ NDPK-P + NDP
NDPK's roles in these NTPs differ; generally, kinases bring in NTPs for nucleic acid synthesis. CTP is provided for
lipid synthesis, UTP for
polysaccharide
Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wa ...
synthesis while GTP is used for protein elongation and
signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
.
During
cAMP
Camp may refer to:
Outdoor accommodation and recreation
* Campsite or campground, a recreational outdoor sleeping and eating site
* a temporary settlement for nomads
* Camp, a term used in New England, Northern Ontario and New Brunswick to descri ...
-mediated signal transduction, NDPK is responsible for phosphorylating GDP released from
G proteins activated from receptor binding; once ATP donates a phosphate group via activity of NDPK, GTP is consecutively bound. Increased activity of membrane-associated NDPK yields cAMP synthesis.
NDPK controls K+ channels, G proteins, cell secretion, cellular energy production, and UTP synthesis.
Regulation
Inhibition by AMPK
NDPK usually consumes ATP, the most abundant cellular nucleotide, and stores the nucleotides. However, consumption of ATP would definitely influence the cellular energy balance, which brings upon the regulation of AMP-activated protein kinase (
AMPK AMPK may refer to:
* AMP-activated protein kinase
5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme (EC 2.7.11.31) that plays a role in cellular energy homeostasis, largely to activate gl ...
). AMPK acts as the energy sensor and regulates ATP pathways by turning the generating pathways or not. Because of such activity, AMPK could directly inhibit NDPK through
phosphorylation
In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
. To be more specific, NDPK supports the production of nucleotides in high-energy and low-stress cellular states. However, this can only happen when AMPK is inactivated because low-stress cellular states of ATP triggers the activation of AMPK, which eventually decreases NDPK activity by phosphorylating serine residues.
Prokaryotic systems
In most prokaryotes, the NDPK enzyme is
tetrameric. It has been reported in a number of pathogens. NDPK function has been studied in ''
Escherichia coli'', ''
Bacillus subtilis,
Salmonella typhimurium, Microccocus luteus, and
Myxococcus xanthus''. Prokaryotic NDPK forms a functional
homotetramer
A tetrameric protein is a protein with a protein quaternary structure, quaternary structure of four subunits (tetrameric). Homotetramers have four identical Protein subunit, subunits (such as glutathione S-transferase), and heterotetramers are M ...
. Nucleoside diphosphate kinase activity involves the transfer of the γ-phosphate of nucleoside triphosphate (NTP) to nucleoside diphosphate (NDP), where N1 and N2 can be ribo- or deoxyribonucleosides. This is done via a high energy phosphohistidine intermediate. Besides involvement in the synthesis of
pyrimidine
Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The other ...
nucleotides, prokaryotic NDPK is also involved in several metabolism cycles. NDPK has also been discovered to act as a
protein histidine kinase, which involves a reversible histidine phosphorylation as a well-known regulatory signal. However, in most
prokaryotes
A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
, NDPK expression levels are involved in the cell growth, development and differentiation of the organism, especially
bacteria.
(p)ppGpp metabolism
In the (p)ppGpp biosynthesis cycle, NDPK serves an important role. When there is an absence of a charged
tRNA in the A site of a
ribosome
Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
, the ribosome will stall and trigger the synthesis of the
guanosine pentaphosphate
(p)ppGpp, guanosine pentaphosphate and tetraphosphate, also known as the "magic spot" nucleotides, are alarmones involved in the stringent response in bacteria that cause the inhibition of RNA synthesis when there is a shortage of amino acids. Thi ...
((p)ppGpp) molecule. (p)ppGpp biosynthesis is a part of the purine metabolism pathway and coordinates a series of cellular activities in response to nutritional abundances. Synthesis of (p)ppGpp is triggered by carbon starvation, or the lack of carbon in the cell's environment, and causes the protein SpoT to activate. SpoT works in conjunction with NDPK and both serve as essential enzymes in the (p)ppGpp biosynthesis cycle. NDPK synthesizes the formation of GDP from GTP via dephosphorylation.
Nm23 gene function
While the biomolecular mechanism by which the Nm23 gene works in cells is currently unknown, like in most prokaryotes, nucleoside diphosphate kinase (NDPK) expression levels determine cell growth and differentiation.
Normally, the Nm23 gene (NME) is involved in
metastasis suppression in humans. In prokaryotes, the Nm23 gene is involved in normal cell development and differentiation. Highly conserved
homologues of the Nm23 gene have been found in prokaryotes, more specifically, ''
Myxococcus xanthus'', a
gram negative soil bacteria. Homologues of Nm23 in ''M. xanthus'' have been closed and characterized as a nucleoside diphosphate kinase (ndk gene) and seems to be essential for ''M. xanthus'' growth. During ''M. xanthus'' development, nucleoside diphosphate kinase activity has also been shown to drastically decrease.
Eukaryotic systems
There are at least four enzymatically active isoforms of NDPK in humans: NDPK-A, NDPK-B, NDPK-C and NDPK-D. All four isoforms have very similar structures and can combine in any form to become functional NDPK hexamers. NDPK is suggested to participate in transmembrane signaling in eukaryotic cells.
In humans
In Eukaryotic systems, the role of the NDK is to synthesize nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate, and synthesize products such as UTP. NDK possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase, and 3'-5' exonuclease activities. Its processes are involved with cell proliferation, differentiation and development, and gene expression in human cells. It is also part of the neural development process, which includes neural patterning and cell fate determination. Furthermore, NDPK is involved with the signal transduction processes and G protein-coupled receptor endocytosis as it transfers a phosphate group onto the G β-subunits and convert GDP to GTP. This increase in GTP concentration near G protein α-subunits causes activation of G protein α-subunits for G-protein signaling. In addition to signaling, NDPK is involved in controlling K+ channels, cell secretion, and cellular energy production.
In plants
The biochemical reactions catalyzed by NDP kinase in plants are analogous to activities described in humans as autophosphorylation activity takes place from ATP and GTP. In addition to this, plants have four types of NDPK isoforms. Cytosolic type I NDPK is involved in metabolism, growth, and stress responses in plants.
Type II NDPK is concentrated in the chloroplast and it is believed to be involved in the photosynthesis process and the oxidative stress management, but its function is not yet known clearly.
Type III NDPK targets both mitochondria and chloroplast, and it is mainly involved in energy metabolism.
The localization and exact function of the type IV NDPK is not yet well known and needs further investigations.
In addition, NDPK is associated with H
2O
2-mediated mitogen-activated protein kinase signaling in plants.
Diseases related to NDPK
Ten
paralogous genes
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a s ...
code for the proteins NDPKs, which are separated into two groups. The first group encodes proteins with NDPK functions. The other group genes code for other various proteins that display low or no NDPK activities. In the first group, one of the genes named NM23 was identified as the first metastasis suppressor protein and its gene Nm23 was less activated in metastatic cells. In a different experiment, human Nm23 was cultured with cancer cells and showed inhibition of metastasis. The level of NM23 protein was inversely proportional to the metastatic potential for human solid tumors. However, other tumor types such as ovarian cancers,
neuroblastoma and hematological malignancies displayed upregulated NM23 levels in patient samples. Therefore, understanding the biological basis of the Nm23 gene family is necessary to have a firm knowledge of its diverse results.
Cardiovascular disease
Nme2, one of the NDPK genes, has been associated with
cardiovascular functions. Nme2 gene is known to form a complex with the beta subunit of the heterotrimetric G protein in heart cells and regulates the contractility of heart. There are two functions of Nme2 that allow for such regulation; one is the histidine kinase activity, which is the phosphorylation of the channels to regulate what goes through and the other is a scaffold function of the formation of
caveolae. The depletion of Nme2/caveolin interaction exhibited a decreased rate of cardiac contractility. Furthermore, more studies with zebra fish revealed that the NDPK depletion has a detrimental effect on heart functioning.
Nme1 and Nme2 as a suppressor of metastasis
There was a lot of debate on whether NM23 gene is responsible for suppressing or activating metastasis. The two contradicting sides on this subject remained ambiguous and undefined throughout the course of NDPK studies. However, recent experiments began to show evidence for NM23 being a suppressor of metastasis. Nme2 was tagged as an anti-metastasis gene, using the tissue chip technology and
immunohistochemistry
Immunohistochemistry (IHC) is the most common application of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells of a tissue section by exploiting the principle of antibodies binding specifically to an ...
. When Nme2 gene products were over-produced in gastric cancer cells, there was a decrease in proliferation, migration, and invasion of such cancer cells. The cell cultures revealed that Nme2 impacts gastric cancer cells, but the question still remains about what regulates Nme2 activities among various cancer types.
Nme1 was found in great number in poorly metastatic sublines of
melanoma
Melanoma, also redundantly known as malignant melanoma, is a type of skin cancer that develops from the pigment-producing cells known as melanocytes. Melanomas typically occur in the skin, but may rarely occur in the mouth, intestines, or eye ( ...
cells. Also, the transfection of Nme1 into a highly metastatic melanoma line significantly reduced metastasis. This theory has been tested with mice as well; the Nme1-deficient mice formed greater lung metastases than wild type mice, showing that this gene has suppressing activity. Invasion of cancer occurs due to changes in cell adhesion and it is caused by gene expression changes in the
epithelial-mesenchymal transition (EMT). Surprisingly, there are many adhesion molecules,
motility factors, signaling pathways,
proteolytic events, EMT hallmarks, and other transcriptional programs that have been linked to the Nme1 proteins. These proteins go about interrupting metastasis by binding metastasis-promoting proteins. The Nme1 proteins bind to viral proteins,
oncogenes, and other metastasis-promoting factors. The binding may be indirect by using the signaling complex.
See also
*
Nucleoside
*
Nucleotide
*
Nucleoside monophosphate
Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules with ...
*
Nucleoside triphosphate
A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are cha ...
*
Thymidine kinase
*
Thymidylate kinase
Thymidylate kinase (; dTMP kinase) catalyzes the phosphorylation of thymidine 5'-monophosphate (dTMP) to form thymidine 5'-diphosphate (dTDP) in the presence of ATP and magnesium:
: ATP + thymidine 5'-phosphate \rightleftharpoons ADP + thymidi ...
*
Thymidine kinase in clinical chemistry Thymidine kinase is an enzyme, a phosphotransferase (a kinase): 2'-deoxythymidine kinase, ATP-thymidine 5'-phosphotransferase, EC 2.7.1.21 that catalyzes the reaction:
Thd + ATP → TMP + ADP
where Thd is (deoxy)thymidine, ATP is adenosine 5’-t ...
*
Thymidylate synthase
References
External links
*
*
{{Portal bar, Biology, border=no
Enzymes
EC 2.7.4