Nonmeasurable
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a non-measurable set is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
which cannot be assigned a meaningful "volume". The existence of such sets is construed to provide information about the notions of
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
,
area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
and
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
in formal set theory. In
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
, the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
entails that non-measurable subsets of \mathbb exist. The notion of a non-measurable set has been a source of great controversy since its introduction. Historically, this led
Borel Borel may refer to: People * Antoine Borel (1840–1915), a Swiss-born American businessman * Armand Borel (1923–2003), a Swiss mathematician * Borel (author), 18th-century French playwright * Borel (1906–1967), pseudonym of the French actor ...
and
Kolmogorov Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet ...
to formulate probability theory on sets which are constrained to be measurable. The measurable sets on the line are iterated countable unions and intersections of intervals (called
Borel set In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets ...
s) plus-minus
null set In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notio ...
s. These sets are rich enough to include every conceivable definition of a set that arises in standard mathematics, but they require a lot of formalism to prove that sets are measurable. In 1970, Robert M. Solovay constructed the
Solovay model In the mathematical field of set theory, the Solovay model is a model constructed by in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue meas ...
, which shows that it is consistent with standard set theory without uncountable choice, that all subsets of the reals are measurable. However, Solovay's result depends on the existence of an
inaccessible cardinal In set theory, a cardinal number is a strongly inaccessible cardinal if it is uncountable, regular, and a strong limit cardinal. A cardinal is a weakly inaccessible cardinal if it is uncountable, regular, and a weak limit cardinal. Since abou ...
, whose existence and consistency cannot be proved within standard set theory.


Historical constructions

The first indication that there might be a problem in defining length for an arbitrary set came from Vitali's theorem. A more recent combinatorial construction which is similar to the construction by Robin Thomas of a non-Lebesgue measurable set with some additional properties appeared in American Mathematical Monthly. One would expect the measure of the union of two disjoint sets to be the sum of the measure of the two sets. A measure with this natural property is called ''finitely additive''. While a finitely additive measure is sufficient for most intuition of area, and is analogous to
Riemann integration In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Gö ...
, it is considered insufficient for
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
, because conventional modern treatments of sequences of events or random variables demand countable additivity. In this respect, the plane is similar to the line; there is a finitely additive measure, extending Lebesgue measure, which is invariant under all
isometries In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
. For higher
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
s the picture gets worse. The
Hausdorff paradox The Hausdorff paradox is a paradox in mathematics named after Felix Hausdorff. It involves the sphere (the surface of a 3-dimensional ball in ). It states that if a certain countable subset is removed from , then the remainder can be divided into ...
and
Banach–Tarski paradox The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then ...
show that a three-dimensional
ball A ball is a round object (usually spherical, but sometimes ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used for s ...
of radius 1 can be dissected into 5 parts which can be reassembled to form two balls of radius 1.


Example

Consider S, the set of all points in the unit circle, and the
action Action may refer to: * Action (philosophy), something which is done by a person * Action principles the heart of fundamental physics * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video gam ...
on S by a group G consisting of all rational rotations (rotations by angles which are
rational Rationality is the quality of being guided by or based on reason. In this regard, a person acts rationally if they have a good reason for what they do, or a belief is rational if it is based on strong evidence. This quality can apply to an ...
multiples of \pi). Here G is countable (more specifically, G is isomorphic to \Q/\Z) while S is uncountable. Hence S breaks up into uncountably many
orbits In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an physical body, object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an satellite, artificia ...
under G (the orbit of s \in S is the countable set \). Using the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
, we could pick a single point from each orbit, obtaining an uncountable subset X \subset S with the property that all of the rational translates (translated copies of the form e^ X := \ for some rational q) of X by G are
pairwise disjoint In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (se ...
(meaning, disjoint from X and from each other). The set of those translates partitions the circle into a countable collection of disjoint sets, which are all pairwise congruent (by rational rotations). The set X will be non-measurable for any rotation-invariant countably additive probability measure on S: if X has zero measure, countable additivity would imply that the whole circle has zero measure. If X has positive measure, countable additivity would show that the circle has infinite measure.


Consistent definitions of measure and probability

The
Banach–Tarski paradox The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then ...
shows that there is no way to define volume in three dimensions unless one of the following five concessions is made: # The volume of a set might change when it is rotated. # The volume of the union of two disjoint sets might be different from the sum of their volumes. # Some sets might be tagged "non-measurable", and one would need to check whether a set is "measurable" before talking about its volume. # The axioms of ZFC (
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
with the axiom of choice) might have to be altered. # The volume of ,13 is 0 or \infty. Standard measure theory takes the third option. One defines a family of measurable sets, which is very rich, and almost any set explicitly defined in most branches of mathematics will be among this family. It is usually very easy to prove that a given specific subset of the geometric plane is measurable. The fundamental assumption is that a countably infinite sequence of disjoint sets satisfies the sum formula, a property called
σ-additivity In mathematics, an additive set function is a function \mu mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, \mu(A \cup B) = \mu(A) + \mu(B). If this ad ...
. In 1970, Solovay demonstrated that the existence of a non-measurable set for the
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
is not provable within the framework of Zermelo–Fraenkel set theory in the absence of an additional axiom (such as the axiom of choice), by showing that (assuming the consistency of an
inaccessible cardinal In set theory, a cardinal number is a strongly inaccessible cardinal if it is uncountable, regular, and a strong limit cardinal. A cardinal is a weakly inaccessible cardinal if it is uncountable, regular, and a weak limit cardinal. Since abou ...
) there is a model of ZF, called
Solovay's model In the mathematical field of set theory, the Solovay model is a model constructed by in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue meas ...
, in which
countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain \mathbb (w ...
holds, every set is Lebesgue measurable and in which the full axiom of choice fails. The axiom of choice is equivalent to a fundamental result of
point-set topology In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differ ...
,
Tychonoff's theorem In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov (whose surname sometimes is tra ...
, and also to the conjunction of two fundamental results of functional analysis, the
Banach–Alaoglu theorem In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem (also known as Alaoglu's theorem) states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common pro ...
and the
Krein–Milman theorem In the mathematical theory of functional analysis, the Krein–Milman theorem is a proposition about compact convex sets in locally convex topological vector spaces (TVSs). This theorem generalizes to infinite-dimensional spaces and to arbitra ...
. It also affects the study of infinite groups to a large extent, as well as
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
and
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
(see
Boolean prime ideal theorem In mathematics, the Boolean prime ideal theorem states that Ideal (order theory), ideals in a Boolean algebra (structure), Boolean algebra can be extended to Ideal (order theory)#Prime ideals , prime ideals. A variation of this statement for Filte ...
). However, the axioms of
determinacy Determinacy is a subfield of game theory and set theory that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "dete ...
and dependent choice together are sufficient for most
geometric measure theory In mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of surfac ...
,
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that the two fundamental forces of nature known at the time, namely g ...
,
Fourier series A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
and
Fourier transforms In mathematics, the Fourier transform (FT) is an integral transform that takes a function (mathematics), function as input then outputs another function that describes the extent to which various Frequency, frequencies are present in the origin ...
, while making all subsets of the real line Lebesgue-measurable.


See also

* * * * * * *


References


Notes


Bibliography

* {{DEFAULTSORT:Non-Measurable Set Measure theory