Noetherian Rings
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a Noetherian ring is a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
that satisfies the
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly Ideal (ring theory), ideals in certain commutative rings. These conditions p ...
on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. Formally, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an n such that I_=I_=\cdots. Equivalently, a ring is left-Noetherian (respectively right-Noetherian) if every left ideal (respectively right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
and
noncommutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a p ...
ring theory since many rings that are encountered in mathematics are Noetherian (in particular the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
,
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s, and rings of algebraic integers in
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
s), and many general theorems on rings rely heavily on the Noetherian property (for example, the
Lasker–Noether theorem In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related ...
and the
Krull intersection theorem In mathematics, more specifically in ring theory, local rings are certain ring (mathematics), rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or m ...
). Noetherian rings are named after
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
, but the importance of the concept was recognized earlier by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
, with the proof of
Hilbert's basis theorem In mathematics Hilbert's basis theorem asserts that every ideal (ring theory), ideal of a polynomial ring over a field (mathematics), field has a finite generating set of an ideal, generating set (a finite ''basis'' in Hilbert's terminology). In ...
(which asserts that polynomial rings are Noetherian) and
Hilbert's syzygy theorem In mathematics, Hilbert's syzygy theorem is one of the three fundamental theorems about polynomial rings over field (mathematics), fields, first proved by David Hilbert in 1890, that were introduced for solving important open questions in invariant ...
.


Characterizations

For
noncommutative ring In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not ...
s, it is necessary to distinguish between three very similar concepts: * A ring is left-Noetherian if it satisfies the ascending chain condition on left ideals. * A ring is right-Noetherian if it satisfies the ascending chain condition on right ideals. * A ring is Noetherian if it is both left- and right-Noetherian. For
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s, all three concepts coincide, but in general they are different. There are rings that are left-Noetherian and not right-Noetherian, and vice versa. There are other, equivalent, definitions for a ring ''R'' to be left-Noetherian: * Every left ideal ''I'' in ''R'' is finitely generated, i.e. there exist elements a_1, \ldots , a_n in ''I'' such that I=Ra_1 + \cdots + Ra_n.Lam (2001), p. 19 * Every
non-empty In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whil ...
set of left ideals of ''R'', partially ordered by inclusion, has a
maximal element In mathematics, especially in order theory, a maximal element of a subset S of some preordered set is an element of S that is not smaller than any other element in S. A minimal element of a subset S of some preordered set is defined dually as an ...
. Similar results hold for right-Noetherian rings. The following condition is also an equivalent condition for a ring ''R'' to be left-Noetherian and it is
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad ...
's original formulation: *Given a sequence f_1, f_2, \dots of elements in ''R'', there exists an integer n such that each f_i is a finite
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
f_i = \sum_^n r_j f_j with coefficients r_j in ''R''. For a commutative ring to be Noetherian it suffices that every
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
of the ring is finitely generated. However, it is not enough to ask that all the
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
s are finitely generated, as there is a non-Noetherian
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
whose maximal ideal is principal (see a counterexample to Krull's intersection theorem at Local ring#Commutative case.)


Properties

* If ''R'' is a Noetherian ring, then the
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
R /math> is Noetherian by the
Hilbert's basis theorem In mathematics Hilbert's basis theorem asserts that every ideal (ring theory), ideal of a polynomial ring over a field (mathematics), field has a finite generating set of an ideal, generating set (a finite ''basis'' in Hilbert's terminology). In ...
. By induction, R _1, \ldots, X_n/math> is a Noetherian ring. Also, , the
power series ring In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums ...
, is a Noetherian ring. * If is a Noetherian ring and is a two-sided ideal, then the
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
is also Noetherian. Stated differently, the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of any
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
of a Noetherian ring is Noetherian. * Every finitely-generated
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
over a commutative Noetherian ring is Noetherian. (This follows from the two previous properties.) * A ring ''R'' is left-Noetherian
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
every finitely generated left ''R''-module is a
Noetherian module In abstract algebra, a Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion. Historically, Hilbert was the first mathematician to work with the pr ...
. * If a commutative ring admits a faithful Noetherian module over it, then the ring is a Noetherian ring. * ( Eakin–Nagata) If a ring ''A'' is a
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
of a commutative Noetherian ring ''B'' such that ''B'' is a
finitely generated module In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts i ...
over ''A'', then ''A'' is a Noetherian ring. *Similarly, if a ring ''A'' is a subring of a commutative Noetherian ring ''B'' such that ''B'' is faithfully flat over ''A'' (or more generally exhibits ''A'' as a pure subring), then ''A'' is a Noetherian ring (see the "faithfully flat" article for the reasoning). * Every localization of a commutative Noetherian ring is Noetherian. * A consequence of the Akizuki–Hopkins–Levitzki theorem is that every left
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...
is left Noetherian. Another consequence is that a left Artinian ring is right Noetherian if and only if it is right Artinian. The analogous statements with "right" and "left" interchanged are also true. * A left Noetherian ring is left
coherent Coherence is, in general, a state or situation in which all the parts or ideas fit together well so that they form a united whole. More specifically, coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics ...
and a left Noetherian domain is a left Ore domain. * (Bass) A ring is (left/right) Noetherian if and only if every
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
(left/right) modules is injective. Every left injective module over a left Noetherian module can be decomposed as a direct sum of indecomposable injective modules. See also #Implication on injective modules below. * In a commutative Noetherian ring, there are only finitely many
minimal prime ideal In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal prime ideals. De ...
s. Also, the
descending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings. These conditions played an important r ...
holds on prime ideals. * In a commutative Noetherian domain ''R'', every element can be factorized into
irreducible element In algebra, an irreducible element of an integral domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. The irreducible elements are the terminal elements of a factor ...
s (in short, ''R'' is a factorization domain). Thus, if, in addition, the factorization is unique
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
multiplication of the factors by
unit Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
s, then ''R'' is a
unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is ...
.


Examples

* Any field, including the fields of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s,
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, and
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s, is Noetherian. (A field only has two ideals — itself and (0).) * Any
principal ideal ring In mathematics, a principal right (left) ideal ring is a ring ''R'' in which every right (left) ideal is of the form ''xR'' (''Rx'') for some element ''x'' of ''R''. (The right and left ideals of this form, generated by one element, are called p ...
, such as the integers, is Noetherian since every ideal is generated by a single element. This includes
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
s and
Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of Euclidean division of integers. Th ...
s. * A
Dedekind domain In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily un ...
(e.g., rings of integers) is a Noetherian domain in which every ideal is generated by at most two elements. * The
coordinate ring In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
of an
affine variety In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
is a Noetherian ring, as a consequence of the Hilbert basis theorem. * The enveloping algebra ''U'' of a finite-dimensional
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
\mathfrak is a both left and right Noetherian ring; this follows from the fact that the
associated graded ring Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associatio ...
of ''U'' is a quotient of \operatorname(\mathfrak), which is a polynomial ring over a field (the PBW theorem); thus, Noetherian. For the same reason, the
Weyl algebra In abstract algebra, the Weyl algebras are abstracted from the ring of differential operators with polynomial coefficients. They are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics. ...
, and more general rings of
differential operator In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and retur ...
s, are Noetherian. * The ring of polynomials in finitely-many variables over the integers or a field is Noetherian. Rings that are not Noetherian tend to be (in some sense) very large. Here are some examples of non-Noetherian rings: * The ring of polynomials in infinitely-many variables, ''X''1, ''X''2, ''X''3, etc. The sequence of ideals (''X''1), (''X''1, ''X''2), (''X''1, ''X''2, ''X''3), etc. is ascending, and does not terminate. * The ring of all
algebraic integer In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s is not Noetherian. For example, it contains the infinite ascending chain of principal ideals: (2), (21/2), (21/4), (21/8), ... * The ring of
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s from the real numbers to the real numbers is not Noetherian: Let ''In'' be the ideal of all continuous functions ''f'' such that ''f''(''x'') = 0 for all ''x'' ≥ ''n''. The sequence of ideals ''I''0, ''I''1, ''I''2, etc., is an ascending chain that does not terminate. * The ring of
stable homotopy groups of spheres In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure ...
is not Noetherian. However, a non-Noetherian ring can be a subring of a Noetherian ring. Since any
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
is a subring of a field, any integral domain that is not Noetherian provides an example. To give a less trivial example, * The ring of
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
s generated by ''x'' and ''y''/''x''''n'' over a field ''k'' is a subring of the field ''k''(''x'',''y'') in only two variables. Indeed, there are rings that are right Noetherian, but not left Noetherian, so that one must be careful in measuring the "size" of a ring this way. For example, if ''L'' is a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of Q2
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to Z, let ''R'' be the ring of homomorphisms ''f'' from Q2 to itself satisfying ''f''(''L'') ⊂ ''L''. Choosing a basis, we can describe the same ring ''R'' as :R=\left\. This ring is right Noetherian, but not left Noetherian; the subset ''I'' ⊂ ''R'' consisting of elements with ''a'' = 0 and ''γ'' = 0 is a left ideal that is not finitely generated as a left ''R''-module. If ''R'' is a commutative subring of a left Noetherian ring ''S'', and ''S'' is finitely generated as a left ''R''-module, then ''R'' is Noetherian. (In the special case when ''S'' is commutative, this is known as Eakin's theorem.) However, this is not true if ''R'' is not commutative: the ring ''R'' of the previous paragraph is a subring of the left Noetherian ring ''S'' = Hom(Q2, Q2), and ''S'' is finitely generated as a left ''R''-module, but ''R'' is not left Noetherian. A
unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is ...
is not necessarily a Noetherian ring. It does satisfy a weaker condition: the ascending chain condition on principal ideals. A ring of polynomials in infinitely-many variables is an example of a non-Noetherian unique factorization domain. A
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every non-zero element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ' ...
is not Noetherian unless it is a principal ideal domain. It gives an example of a ring that arises naturally in
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
but is not Noetherian.


Noetherian group rings

Consider the
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
R /math> of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
G over a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
R. It is a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, and an
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
over R if R is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
. For a group G and a commutative ring R, the following two conditions are equivalent. * The ring R /math> is left-Noetherian. * The ring R /math> is right-Noetherian. This is because there is a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
between the left and right ideals of the group ring in this case, via the R-
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
:R to R , :g\mapsto g^\qquad(\forall g\in G). Let G be a group and R a ring. If R /math> is left/right/two-sided Noetherian, then R is left/right/two-sided Noetherian and G is a Noetherian group. Conversely, if R is a Noetherian commutative ring and G is an extension of a
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
solvable group In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminat ...
(i.e. a polycyclic group) by a
finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
, then R /math> is two-sided Noetherian. On the other hand, however, there is a Noetherian group G whose group ring over any Noetherian commutative ring is not two-sided Noetherian.


Key theorems

Many important theorems in ring theory (especially the theory of
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s) rely on the assumptions that the rings are Noetherian.


Commutative case

*Over a commutative Noetherian ring, each ideal has a
primary decomposition In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related ...
, meaning that it can be written as an
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of finitely many
primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. ...
s (whose radicals are all distinct) where an ideal ''Q'' is called primary if it is proper and whenever ''xy'' ∈ ''Q'', either ''x'' ∈ ''Q'' or ''y'' ''n'' ∈ ''Q'' for some positive integer ''n''. For example, if an element f = p_1^ \cdots p_r^ is a product of powers of distinct prime elements, then (f) = (p_1^) \cap \cdots \cap (p_r^) and thus the primary decomposition is a direct generalization of
prime factorization In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a comp ...
of integers and polynomials. *A Noetherian ring is defined in terms of ascending chains of ideals. The
Artin–Rees lemma In mathematics, the Artin–Rees lemma is a basic result about modules over a Noetherian ring, along with results such as the Hilbert basis theorem. It was proved in the 1950s in independent works by the mathematicians Emil Artin and David Ree ...
, on the other hand, gives some information about a descending chain of ideals given by powers of ideals I \supseteq I^2 \supseteq I^3 \supseteq \cdots . It is a technical tool that is used to prove other key theorems such as the
Krull intersection theorem In mathematics, more specifically in ring theory, local rings are certain ring (mathematics), rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or m ...
. *The
dimension theory In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
of commutative rings behaves poorly over non-Noetherian rings; the very fundamental theorem,
Krull's principal ideal theorem In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, ''Krull ...
, already relies on the "Noetherian" assumption. Here, in fact, the "Noetherian" assumption is often not enough and (Noetherian) universally catenary rings, those satisfying a certain dimension-theoretic assumption, are often used instead. Noetherian rings appearing in applications are mostly universally catenary.


Non-commutative case

* Goldie's theorem


Implication on injective modules

Given a ring, there is a close connection between the behaviors of
injective module In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module ''Q'' that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if ''Q'' is a submodule ...
s over the ring and whether the ring is a Noetherian ring or not. Namely, given a ring ''R'', the following are equivalent: *''R'' is a left Noetherian ring. *(Bass) Each direct sum of injective left ''R''-modules is injective. *Each injective left ''R''-module is a direct sum of indecomposable injective modules. *(Faith–Walker) There exists a
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
\mathfrak such that each injective left module over ''R'' is a direct sum of \mathfrak-generated modules (a module is \mathfrak-generated if it has a
generating set In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to ...
of
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
at most \mathfrak). *There exists a left ''R''-module ''H'' such that every left ''R''-module embeds into a direct sum of copies of ''H''. The
endomorphism ring In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in ...
of an indecomposable injective module is
local Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States Arts, entertainment, and media * ''Local'' (comics), a limited series comic book by Bria ...
and thus Azumaya's theorem says that, over a left Noetherian ring, each indecomposable decomposition of an injective module is equivalent to one another (a variant of the Krull–Schmidt theorem).


See also

*
Noetherian scheme In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets \operatorname A_i, where each A_i is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noe ...
*
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...


Notes


References

* * Atiyah, M. F., MacDonald, I. G. (1969). Introduction to commutative algebra. Addison-Wesley-Longman. * * * * * * Chapter X of *


External links

* {{springer, title=Noetherian ring, id=p/n066850 Ring theory