Niven Numbers
   HOME

TheInfoList



OR:

In mathematics, a harshad number (or Niven number) in a given
number base In a positional numeral system, the radix or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal/denary system (the most common system in use today) the radix (base number) is t ...
is an
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
that is divisible by the sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Harshad numbers were defined by
D. R. Kaprekar Dattatreya Ramchandra Kaprekar ( mr, दत्तात्रेय रामचंद्र कापरेकर; 17 January 1905 – 1986) was an Indian recreational mathematician who described several classes of natural numbers incl ...
, a
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
from
India India, officially the Republic of India ( Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the ...
. The word "harshad" comes from the
Sanskrit Sanskrit (; attributively , ; nominalization, nominally , , ) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in South Asia after its predecessor languages had Trans-cul ...
' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by
Ivan M. Niven Ivan Morton Niven (October 25, 1915 May 9, 1999) was a Canadian-American mathematician, specializing in number theory and known for his work on Waring's problem. He worked for many years as a professor at the University of Oregon, and was presiden ...
at a conference on
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
in 1977.


Definition

Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is a harshad number in base if: :X \equiv 0 \bmod . A number which is a harshad number in every number base is called an all-harshad number, or an all-Niven number. There are only four all-harshad numbers: 1, 2, 4, and 6. The number 12 is a harshad number in all bases except
octal The octal numeral system, or oct for short, is the radix, base-8 number system, and uses the Numerical digit, digits 0 to 7. This is to say that 10octal represents eight and 100octal represents sixty-four. However, English, like most languages, ...
.


Examples

* The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9 (1 + 8 = 9), and 18 is
divisible In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
by 9. * The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91). * The number 19 is not a harshad number in base 10, because the sum of the digits 1 and 9 is 10 (1 + 9 = 10), and 19 is not divisible by 10. *In base 10, every natural number expressible in the form 9Rnan, where the number Rn consists of n copies of the single digit 1, n>0, and an is a positive integer less than 10n and multiple of n, is a harshad number. (R. D’Amico, 2019). The number 9R3a3 = 521478, where R3 = 111, n = 3 and a3 = 3×174 = 522, is a harshad number; in fact, we have: 521478/(5+2+1+4+7+8) = 521478/27 = 19314. *Harshad numbers in
base 10 The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
form the sequence: *: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90,
100 100 or one hundred (Roman numeral: C) is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the short hundred or five score in order to differentiate the English and Germanic use of "hundred" to des ...
,
102 102 may refer to: *102 (number), the number *AD 102, a year in the 2nd century AD *102 BC, a year in the 2nd century BC *102 (ambulance service), an emergency medical transport service in Uttar Pradesh, India *102 (Clyde) Field Squadron, Royal Engin ...
,
108 108 may refer to: * 108 (number) * AD 108, a year * 108 BC, a year * 108 (artist) (born 1978), Italian street artist * 108 (band), an American hardcore band * 108 (emergency telephone number), an emergency telephone number in several states in Indi ...
,
110 110 may refer to: *110 (number), natural number *AD 110, a year *110 BC, a year *110 film, a cartridge-based film format used in still photography *110 (MBTA bus), Massachusetts Bay Transportation Authority bus route *110 (song), 2019 song by Capi ...
,
111 111 may refer to: *111 (number) *111 BC *AD 111 *111 (emergency telephone number) *111 (Australian TV channel) * Swissair Flight 111 * ''111'' (Her Majesty & the Wolves album) * ''111'' (Željko Joksimović album) * NHS 111 *(111) a Miller index fo ...
,
112 112 may refer to: *112 (number), the natural number following 111 and preceding 113 *112 (band), an American R&B quartet from Atlanta, Georgia ** ''112'' (album), album from the band of the same name *112 (emergency telephone number), the standard ...
,
114 114 may refer to: *114 (number) *AD 114 *114 BC *114 (1st London) Army Engineer Regiment, Royal Engineers, an English military unit *114 (Antrim Artillery) Field Squadron, Royal Engineers, a Northern Irish military unit *114 (MBTA bus) *114 (New Je ...
,
117 117 may refer to: *117 (number) *AD 117 *117 BC *117 (emergency telephone number) *117 (MBTA bus) * 117 (TFL bus) *117 (New Jersey bus) *''117°'', a 1998 album by Izzy Stradlin *No. 117 (SPARTAN-II soldier ID), personal name John, the Master Chief ...
,
120 120 may refer to: *120 (number), the number * AD 120, a year in the 2nd century AD *120 BC, a year in the 2nd century BC *120 film, a film format for still photography * ''120'' (film), a 2008 film *120 (MBTA bus) *120 (New Jersey bus) *120 (Kent) ...
,
126 126 may refer to: *126 (number), a natural number *AD 126, a year in the 2nd century AD *126 BC, a year in the 2nd century BC *126 film, a cartridge-based film format used in still photography * 126 (New Jersey bus) * 126 Artist-run Gallery *Interst ...
,
132 132 may refer to: *132 (number) *AD 132 *132 BC __NOTOC__ Year 132 BC was a year of the pre-Julian Roman calendar. At the time it was known as the Year of the Consulship of Laenas and Rupilius (or, less frequently, year 622 ''Ab urbe condita'') ...
,
133 133 may refer to: *133 (number) * AD 133 *133 BC *133 (song) 133 may refer to: *133 (number) * AD 133 *133 BC __NOTOC__ Year 133 BC was a year of the pre-Julian Roman calendar. At the time it was known as the Year of the Consulship of Scaevol ...
,
135 135 may refer to: *135 (number) *AD 135 *135 BC *135 film 135 film, more popularly referred to as 35 mm film or 35 mm, is a format of photographic film used for still photography. It is a film with a film gauge of loaded into a ...
,
140 140 may refer to: * 140 (number), an integer * AD 140, a year of the Julian calendar * 140 BC, a year of the pre-Julian Roman calendar * ''140'' (video game), a 2013 platform game * Tin King stop, MTR digital station code See also * 140th (dis ...
,
144 144 may refer to: * 144 (number), the natural number following 143 and preceding 145 * AD 144, a year of the Julian calendar, in the second century AD * 144 BC, a year of the pre-Julian Roman calendar * ''144'' (film), a 2015 Indian comedy * ''14 ...
,
150 150 may refer to: *150 (number), a natural number * AD 150, a year in the 2nd century AD *150 BC, a year in the 2nd century BC *150 Regiment RLC * Combined Task Force 150 See also * List of highways numbered 150 The following highways are number ...
,
152 Year 152 ( CLII) was a leap year starting on Friday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Glabrio and Homullus (or, less frequently, year 905 ''Ab urbe condita'' ...
,
153 Year 153 ( CLIII) was a common year starting on Sunday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Rusticus and Rufinus (or, less frequently, year 906 ''Ab urbe con ...
,
156 Year 156 ( CLVI) was a leap year starting on Wednesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Silvanus and Augurinus (or, less frequently, year 909 '' Ab urbe co ...
,
162 Year 162 ( CLXII) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. In the Roman Empire, it was known as the Year of the Consulship of Rusticus and Plautius (or, less frequently, year 915 ''Ab ...
,
171 Year 171 ( CLXXI) was a common year starting on Monday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Severus and Herennianus (or, less frequently, year 924 ''Ab urbe co ...
,
180 __NOTOC__ Year 180 ( CLXXX) was a leap year starting on Friday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Rusticus and Condianus (or, less frequently, year 933 ''Ab ...
,
190 Year 190 (Roman numerals, CXC) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Aurelius and Sura (or, less frequently, year 943 ''Ab ...
,
192 Year 192 ( CXCII) was a leap year starting on Saturday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Aelius and Pertinax (or, less frequently, year 945 ''Ab urbe condita ...
,
195 Year 195 (Roman numerals, CXCV) was a common year starting on Wednesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Scrapula and Clemens (or, less frequently, year 948 ...
, 198,
200 __NOTOC__ Year 200 ( CC) was a leap year starting on Tuesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Severus and Victorinus (or, less frequently, year 953 ''Ab u ...
, ... . *All integers between
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
and are -harshad numbers.


Properties

Given the
divisibility test A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any rad ...
for 9, one might be tempted to generalize that all numbers divisible by 9 are also harshad numbers. But for the purpose of determining the harshadness of , the digits of can only be added up once and must be divisible by that sum; otherwise, it is not a harshad number. For example, 99 is not a harshad number, since 9 + 9 = 18, and 99 is not divisible by 18. The base number (and furthermore, its powers) will always be a harshad number in its own base, since it will be represented as "10" and 1 + 0 = 1. All numbers whose base ''b'' digit sum divides ''b''−1 are harshad numbers in base ''b''. For a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
to also be a harshad number it must be less than or equal to the base number, otherwise the digits of the prime will add up to a number that is more than 1, but less than the prime, and will not be divisible. For example: 11 is not harshad in base 10 because the sum of its digits “11” is 1 + 1 = 2, and 11 is not divisible by 2; while in
base 12 The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead wr ...
the number 11 may be represented as “Ɛ”, the sum of whose digits is also Ɛ. Since Ɛ is divisible by itself, it is harshad in base 12. Although the sequence of
factorial In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) ...
s starts with harshad numbers in base 10, not all factorials are harshad numbers. 432! is the first that is not. (432! has digit sum = 3897 = 32×433 in base 10, thus not dividing 432!) Smallest such that k \cdot n is a harshad number are :1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 9, 3, 2, 3, 6, 1, 6, 1, 1, 5, 9, 1, 2, 6, 1, 3, 9, 1, 12, 6, 4, 3, 2, 1, 3, 3, 3, 1, 10, 1, 12, 3, 1, 5, 9, 1, 8, 1, 2, 3, 18, 1, 2, 2, 2, 9, 9, 1, 12, 6, 1, 3, 3, 2, 3, 3, 3, 1, 18, 1, 7, 3, 2, 2, 4, 2, 9, 1, ... . Smallest such that k \cdot n is not a harshad number are :11, 7, 5, 4, 3, 11, 2, 2, 11, 13, 1, 8, 1, 1, 1, 1, 1, 161, 1, 8, 5, 1, 1, 4, 1, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 83, 1, 1, 1, 4, 1, 4, 1, 1, 11, 1, 1, 2, 1, 5, 1, 1, 1, 537, 1, 1, 1, 1, 1, 83, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 68, 1, 1, 1, 1, 1, 1, 1, 2, ... .


Other bases

The harshad numbers in
base 12 The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead wr ...
are: :1, 2, 3, 4, 5, 6, 7, 8, 9, ᘔ, Ɛ, 10, 1ᘔ, 20, 29, 30, 38, 40, 47, 50, 56, 60, 65, 70, 74, 80, 83, 90, 92, ᘔ0, ᘔ1, Ɛ0, 100, 10ᘔ, 110, 115, 119, 120, 122, 128, 130, 134, 137, 146, 150, 153, 155, 164, 172, 173, 182, 191, 1ᘔ0, 1Ɛ0, 1Ɛᘔ, 200, ... where ᘔ represents ten and Ɛ represents eleven. Smallest such that k \cdot n is a base-12 harshad number are (written in base 10): :1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 10, 2, 11, 3, 4, 1, 7, 1, 12, 6, 4, 3, 11, 2, 11, 3, 1, 5, 9, 1, 12, 11, 4, 3, 11, 2, 11, 1, 4, 4, 11, 1, 16, 6, 4, 3, 11, 2, 1, 3, 11, 11, 11, 1, 12, 11, 5, 7, 9, 1, 7, 3, 3, 9, 11, 1, ... Smallest such that k \cdot n is not a base-12 harshad number are (written in base 10): :13, 7, 5, 4, 3, 3, 2, 2, 2, 2, 13, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 157, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 157, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1885, 1, 1, 1, 1, 1, 3, ... Similar to base 10, not all factorials are harshad numbers in base 12. After 7! (= 5040 = 2Ɛ00 in base 12, with digit sum 13 in base 12, and 13 does not divide 7!), 1276! is the next that is not. (1276! has digit sum = 14201 = 11×1291 in base 12, thus does not divide 1276!)


Consecutive harshad numbers


Maximal runs of consecutive harshad numbers

Cooper and Kennedy proved in 1993 that no 21 consecutive integers are all harshad numbers in base 10. They also constructed infinitely many 20-tuples of consecutive integers that are all 10-harshad numbers, the smallest of which exceeds 1044363342786. extended the Cooper and Kennedy result to show that there are 2''b'' but not 2''b'' + 1 consecutive ''b''-harshad numbers. This result was strengthened to show that there are infinitely many runs of 2''b'' consecutive ''b''-harshad numbers for ''b'' = 2 or 3 by and for arbitrary ''b'' by Brad Wilson in 1997. In
binary Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that ta ...
, there are thus infinitely many runs of four consecutive harshad numbers and in
ternary Ternary (from Latin ''ternarius'') or trinary is an adjective meaning "composed of three items". It can refer to: Mathematics and logic * Ternary numeral system, a base-3 counting system ** Balanced ternary, a positional numeral system, usef ...
infinitely many runs of six. In general, such maximal sequences run from ''N''·''bk'' − ''b'' to ''N''·''bk'' + (''b'' − 1), where ''b'' is the base, ''k'' is a relatively large power, and ''N'' is a constant. Given one such suitably chosen sequence, we can convert it to a larger one as follows: * Inserting zeroes into ''N'' will not change the sequence of digital sums (just as 21, 201 and 2001 are all 10-harshad numbers). * If we insert ''n'' zeroes after the first digit, ''α'' (worth ''αbi''), we increase the value of ''N'' by ''αbi''(''bn'' − 1). * If we can ensure that ''bn'' − 1 is divisible by all digit sums in the sequence, then the divisibility by those sums is maintained. * If our initial sequence is chosen so that the digit sums are
coprime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equival ...
to ''b'', we can solve ''bn'' = 1 modulo all those sums. * If that is not so, but the part of each digit sum not coprime to ''b'' divides ''αbi'', then divisibility is still maintained. * ''(Unproven)'' The initial sequence is so chosen. Thus our initial sequence yields an infinite set of solutions.


First runs of exactly consecutive 10-harshad numbers

The smallest naturals starting runs of ''exactly'' consecutive 10-harshad numbers (i.e., smallest such that x, x+1, \cdots, x+n-1 are harshad numbers but x-1 and x+n are not) are as follows :
style="text-align:right;" , - , , , 1 , , 2 , , 3 , , 4 , , 5 , - , , , 12 , , 20 , , 110 , , 510 , , , - , , , 6 , , 7 , , 8 , , 9 , , 10 , - , , , , , , , , , , , 1 , - , , , 11 , , 12 , , 13 , , 14 , , 15 , - , , , , , , , , , , , unknown , - , , , 16 , , 17 , , 18 , , 19 , , 20 , - , , , , , , , unknown , , unknown , , unknown , -
By the previous section, no such exists for n > 20.


Estimating the density of harshad numbers

If we let N(x) denote the number of harshad numbers \le x, then for any given \epsilon > 0, :x^ \ll N(x) \ll \frac as shown by
Jean-Marie De Koninck Jean-Marie De Koninck, (born 1948) is a Canadian mathematician. He has served as a professor at Université Laval since 1972 and is the creator of the road safety program Opération Nez Rouge, or "Red Nose Operation", a system preventing people ...
and Nicolas Doyon; furthermore, De Koninck, Doyon and Kátai proved that :N(x)=(c+o(1))\frac, where c = (14/27) \log 10 \approx 1.1939 and the o(1) term uses Big O notation.


Sums of harshad numbers

Every natural number not exceeding one billion is either a harshad number or the sum of two harshad numbers. Conditional to a technical hypothesis on the zeros of certain
Dedekind zeta functions In mathematics, the Dedekind zeta function of an algebraic number field ''K'', generally denoted ζ''K''(''s''), is a generalization of the Riemann zeta function (which is obtained in the case where ''K'' is the field of rational numbers Q). It ...
, Sanna proved that there exists a positive integer k such that every natural number is the sum of at most k harshad numbers, that is, the set of harshad numbers is an
additive basis In additive number theory, an additive basis is a set S of natural numbers with the property that, for some finite number k, every natural number can be expressed as a sum of k or fewer elements of S. That is, the sumset of k copies of S consists of ...
. The number of ways that each natural number 1, 2, 3, ... can be written as sum of two harshad numbers is: :0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 3, 2, 4, 3, 3, 4, 3, 3, 5, 3, 4, 5, 4, 4, 7, 4, 5, 6, 5, 3, 7, 4, 4, 6, 4, 2, 7, 3, 4, 5, 4, 3, 7, 3, 4, 5, 4, 3, 8, 3, 4, 6, 3, 3, 6, 2, 5, 6, 5, 3, 8, 4, 4, 6, ... . The smallest number that can be written in exactly 1, 2, 3, ... ways as the sum of two harshad numbers is: :2, 4, 6, 8, 10, 51, 48, 72, 108, 126, 90, 138, 144, 120, 198, 162, 210, 216, 315, 240, 234, 306, 252, 372, 270, 546, 360, 342, 444, 414, 468, 420, 642, 450, 522, 540, 924, 612, 600, 666, 630, 888, 930, 756, 840, 882, 936, 972, 1098, 1215, 1026, 1212, 1080, ... .


Nivenmorphic numbers

A Nivenmorphic number or harshadmorphic number for a given number base is an integer such that there exists some harshad number whose
digit sum In mathematics, the digit sum of a natural number in a given number base is the sum of all its digits. For example, the digit sum of the decimal number 9045 would be 9 + 0 + 4 + 5 = 18. Definition Let n be a natural number. We define the digit s ...
is , and , written in that base, terminates written in the same base. For example, 18 is a Nivenmorphic number for base 10: 16218 is a harshad number 16218 has 18 as digit sum 18 terminates 16218 Sandro Boscaro determined that for base 10 all positive integers are Nivenmorphic numbers except 11. In fact, for an even integer ''n'' > 1, all positive integers except ''n''+1 are Nivenmorphic numbers for base ''n'', and for an odd integer ''n'' > 1, all positive integers are Nivenmorphic numbers for base ''n''. e.g. the Nivenmorphic numbers in
base 12 The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead wr ...
are (all positive integers except 13). The smallest number with base 10 digit sum ''n'' and terminates ''n'' written in base 10 are: (0 if no such number exists) :1, 2, 3, 4, 5, 6, 7, 8, 9, 910, 0, 912, 11713, 6314, 915, 3616, 15317, 918, 17119, 9920, 18921, 9922, 82823, 19824, 9925, 46826, 18927, 18928, 78329, 99930, 585931, 388832, 1098933, 198934, 289835, 99936, 99937, 478838, 198939, 1999840, 2988941, 2979942, 2979943, 999944, 999945, 4698946, 4779947, 2998848, 2998849, 9999950, ...


Multiple harshad numbers

defines a multiple harshad number as a harshad number that, when divided by the sum of its digits, produces another harshad number.. He states that 6804 is "MHN-4" on the grounds that :\begin 6804/18&=378\\ 378/18&=21\\ 21/3&=7\\ 7/7&=1 \end (it is not MHN-5 since 1/1=1, but 1 is not "another" harshad number) and went on to show that 2016502858579884466176 is MHN-12. The number 10080000000000 = 1008·1010, which is smaller, is also MHN-12. In general, 1008·10''n'' is MHN-(''n''+2).


References


External links

{{Divisor classes Base-dependent integer sequences