HOME





171 (number)
171 (one hundred ndseventy-one) is the natural number following 170 and preceding 172. In mathematics 171 is the 18th triangular number and a Jacobsthal number. There are 171 transitive relations on three labeled elements, and 171 combinatorially distinct ways of subdividing a cuboid by flat cuts into a mesh of tetrahedra, without adding extra vertices. The diagonals of a regular decagon meet at 171 points, including both crossings and the vertices of the decagon. There are 171 faces and edges in the 57-cell, an abstract 4-polytope with hemi- dodecahedral cells that is its own dual polytope. Within moonshine theory of sporadic groups, the friendly giant \mathbb is defined as having cyclic groups ⟨ m ⟩ that are linked with the function, :f_(\tau) = q^ + a_q + a_q^ + ... , \text a_ ∈ \mathbb, \text q = e^, \text \tau>0; where q is the character of \mathbb at m. This generates 171 moonshine groups within \mathbb associated with f_ that are principal moduli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Dodecahedron
A regular dodecahedron or pentagonal dodecahedronStrictly speaking, a pentagonal dodecahedron need not be composed of regular pentagons. The name "pentagonal dodecahedron" therefore covers a wider class of solids than just the Platonic solid, the regular dodecahedron. is a dodecahedron composed of regular polygon, regular pentagonal faces, three meeting at each Vertex (geometry), vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron, including the other Platonic solids, has already been described by other philosophers since antiquity. The regular dodecahedron is a truncated trapezohedron because it is the result of Truncation (geometry), truncating axial vertices of a pentagonal trapezohedron. It is also a Goldberg polyhedron because it is the initial polyhedron to construct new polyhedrons by the process of chamfering. It has a re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commensurability (group Theory)
In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer. Abstract commensurability Two group (mathematics), groups ''G''1 and ''G''2 are said to be (abstractly) commensurable if there are subgroups ''H''1 ⊂ ''G''1 and ''H''2 ⊂ ''G''2 of finite set, finite index (group theory), index such that ''H''1 is group isomorphism, isomorphic to ''H''2. For example: *A group is finite if and only if it is commensurable with the trivial group. *Any two finitely generated free groups on at least 2 generators are commensurable with each other. The group modular group, ''SL''(2,Z) is also commensurable with these free groups. *Any two surface groups of genus (mathematics), genus at least 2 are commensurable with each other. In geometric group theory, a finitely generated group is viewed as a metric space using the word metric. If two gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genus (mathematics)
In mathematics, genus (: genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic \chi, via the relationship \chi=2-2g for closed surfaces, where g is the genus. For surfaces with b boundary components, the equation reads \chi=2-2g-b. In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Character (mathematics)
In mathematics, a character is (most commonly) a special kind of function from a group to a field (such as the complex numbers). There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified. Multiplicative character A multiplicative character (or linear character, or simply character) on a group ''G'' is a group homomorphism from ''G'' to the multiplicative group of a field , usually the field of complex numbers. If ''G'' is any group, then the set Ch(''G'') of these morphisms forms an abelian group under pointwise multiplication. This group is referred to as the character group of ''G''. Sometimes only ''unitary'' characters are considered (thus the image is in the unit circle); other such homomorphisms are then called ''quasi-characters''. Dirichlet characters can be seen as a special case of this definition. Multiplicative characters are linearly independent, i.e. if \chi_1,\chi_2, \ldots , \chi_n are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monster Group
In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group; it has order :    : = 2463205976112133171923293141475971 : ≈ . The finite simple groups have been completely classified. Every such group belongs to one of 18 countably infinite families or is one of 26 sporadic groups that do not follow such a systematic pattern. The monster group contains 20 sporadic groups (including itself) as subquotients. Robert Griess, who proved the existence of the monster in 1982, has called those 20 groups the ''happy family'', and the remaining six exceptions '' pariahs''. It is difficult to give a good constructive definition of the monster because of its complexity. Martin Gardner wrote a popular account of the monster group in his June 1980 Mathematical Games column in ''Scientific American''. History The monster was predi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sporadic Group
In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The mentioned classification theorem states that the list of finite simple groups consists of 18 countably infinite families plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. The Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups. The monster group, or ''friendly giant'', is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Émile Mathieu in the 1860s and the ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moonshine Theory
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular the ''j'' function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979. The monstrous moonshine is now known to be underlain by a vertex operator algebra called the moonshine module (or monster vertex algebra) constructed by Igor Frenkel, James Lepowsky, and Arne Meurman in 1988, which has the monster group as its group of symmetries. This vertex operator algebra is commonly interpreted as a structure underlying a two-dimensional conformal field theory, allowing physics to form a bridge between two mathematical areas. The conjectures made by Conway and Norton were proven by Richard Borcherds for the moonshine module in 1992 using the no-ghost theorem from string theory and the theory of vertex operator algebras and generalized Kac–Moo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Polytope
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a corresponding symmetry class. For example, the regular polyhedrathe (convex) Platonic solids and (star) Kepler–Poinsot polyhedraform dual pairs, where the regular tetrahedron is self-dual. The dual of an isogonal polyhedron (one in which any two vertices are equivalent under symmetries of the polyhedron) is an isohedral polyhedron (one in which any two faces are equivalent .., and vice v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface (mathematics), surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term ''polyhedron'' is often used to refer implicitly to the whole structure (mathematics), structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices. There are many definitions of polyhedron. Nevertheless, the polyhedron is typically understood as a generalization of a two-dimensional polygon and a three-dimensional specialization of a polytope, a more general concept in any number of dimensions. Polyhedra have several general characteristics that include the number of faces, topological classification by Eule ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]