HOME

TheInfoList



OR:

Neutral mutations are changes in
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
sequence that are neither beneficial nor detrimental to the ability of an
organism An organism is any life, living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have be ...
to survive and reproduce. In
population genetics Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as Adaptation (biology), adaptation, s ...
,
mutations In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosi ...
in which
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
does not affect the spread of the mutation in a species are termed neutral mutations. Neutral mutations that are inheritable and not linked to any genes under selection will be lost or will replace all other
alleles An allele is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule. Alleles can differ at a single position through single nucleotide polymorphisms (SNP), but they can also have insertions and deletions ...
of the gene. That loss or fixation of the gene proceeds based on random sampling known as
genetic drift Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, is the change in the Allele frequency, frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene va ...
. A neutral mutation that is in
linkage disequilibrium Linkage disequilibrium, often abbreviated to LD, is a term in population genetics referring to the association of genes, usually linked genes, in a population. It has become an important tool in medical genetics and other fields In defining LD, it ...
with other alleles that are under selection may proceed to loss or fixation via
genetic hitchhiking Genetic hitchhiking, also called genetic draft or the hitchhiking effect, is when an allele changes frequency not because it itself is under natural selection, but because it is near another gene that is undergoing a selective sweep and that is ...
and/or background selection. While many mutations in a
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
may decrease an organism’s ability to survive and reproduce, also known as fitness, those mutations are selected against and are not passed on to
future generations Future generations are Cohort (statistics), cohorts of hypothetical people not yet born. Future generations are contrasted with current and past generations and evoked in order to encourage thinking about intergenerational equity. The Moral agenc ...
. The most commonly-observed mutations that are detectable as variation in the genetic makeup of organisms and populations appear to have no visible effect on the fitness of individuals and are therefore neutral. The identification and study of neutral mutations has led to the development of the
neutral theory of molecular evolution The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The ...
, which is an important and often-controversial theory that proposes that most molecular variation within and among species is essentially neutral and not acted on by selection. Neutral mutations are also the basis for using
molecular clock The molecular clock is a figurative term for a technique that uses the mutation rate of biomolecules to deduce the time in prehistory when two or more life forms diverged. The biomolecular data used for such calculations are usually nucleot ...
s to identify such evolutionary events as
speciation Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within ...
and adaptive or
evolutionary radiation An evolutionary radiation is an increase in taxonomic diversity that is caused by elevated rates of speciation, that may or may not be associated with an increase in morphological disparity. A significantly large and diverse radiation within ...
s.


History

Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English Natural history#Before 1900, naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all speci ...
commented on the idea of neutral mutation in his work, hypothesizing that mutations that do not give an advantage or disadvantage may fluctuate or become fixed apart from
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
. "Variations neither useful nor injurious would not be affected by natural selection, and would be left either a fluctuating element, as perhaps we see in certain polymorphic species, or would ultimately become fixed, owing to the nature of the organism and the nature of the conditions." While Darwin is widely credited with introducing the idea of natural selection which was the focus of his studies, he also saw the possibility for changes that did not benefit or hurt an organism. Darwin's view of change being mostly driven by traits that provide advantage was widely accepted until the 1960s. While researching mutations that produce nucleotide substitutions in 1968,
Motoo Kimura (November 13, 1924 – November 13, 1994) was a Japanese biologist best known for introducing the neutral theory of molecular evolution in 1968. He became one of the most influential theoretical population geneticists. He is remembered in ge ...
found that the rate of substitution was so high that if each mutation improved fitness, the gap between the most fit and typical genotype would be implausibly large. However, Kimura explained this rapid rate of mutation by suggesting that the majority of mutations were neutral, i.e. had little or no effect on the fitness of the organism. Kimura developed mathematical models of the behavior of neutral mutations subject to random genetic drift in biological populations. This theory has become known as the neutral theory of molecular evolution. As technology has allowed for better analysis of genomic data, research has continued in this area. While natural selection may encourage adaptation to a changing environment, neutral mutation may push divergence of species due to nearly random genetic drift.


Impact on evolutionary theory

Neutral mutation has become a part of the neutral theory of molecular evolution, proposed in the 1960s. This theory suggests that neutral mutations are responsible for a large portion of DNA sequence changes in a species. For example, bovine and human insulin, while differing in
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
sequence are still able to perform the same function. The amino acid substitutions between species were seen therefore to be neutral or not impactful to the function of the protein. Neutral mutation and the neutral theory of molecular evolution are not separate from natural selection but add to Darwin's original thoughts. Mutations can give an advantage, create a disadvantage, or make no measurable difference to an organism's survival. A number of observations associated with neutral mutation were predicted in neutral theory including: amino acids with similar biochemical properties should be substituted more often than biochemically different amino acids; synonymous base substitutions should be observed more often than nonsynonymous substitutions;
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of the cistron .e., gen ...
s should evolve at the same rate as synonymous mutations in coding
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequence ...
s; and pseudogenes should also evolve at a similar rate. These predictions have been confirmed with the introduction of additional genetic data since the theory’s introduction.


Types


Synonymous mutation of bases

When an incorrect
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
is inserted during replication or transcription of a coding region, it can affect the eventual
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
of the sequence into amino acids. Since multiple
codons Genetic code is a set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome, which links pro ...
are used for the same amino acids, a change in a single base may still lead to translation of the same amino acid. This phenomenon is referred to as degeneracy and allows for a variety of codon combinations leading to the same amino acid being produced. For example, the codes TCT, TCC, TCA, TCG, AGT, and AGC all code for the amino acid
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
. This can be explained by the wobble concept.
Francis Crick Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the Nucleic acid doub ...
proposed this theory to explain why specific tRNA molecules could recognize multiple codons. The area of the tRNA that recognizes the codon called the anticodon is able to bind multiple interchangeable bases at its 5' end due to its spatial freedom. A fifth base called inosine can also be substituted on a tRNA and is able to bind with A, U, or C. This flexibility allows for changes in bases in codons leading to translation of the same amino acid. The changing of a base in a codon without the changing of the translated amino acid is called a synonymous mutation. Since the amino acid translated remains the same a synonymous mutation has traditionally been considered a neutral mutation. Some research has suggested that there is bias in selection of base substitution in synonymous mutation. This could be due to selective pressure to improve translation efficiency associated with the most available tRNAs or simply mutational bias. If these mutations influence the rate of translation or an organism’s ability to manufacture protein they may actually influence the fitness of the affected organism.


Neutral amino acid substitution

While substitution of a base in a noncoding area of a
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
may make little difference and be considered neutral, base substitutions in or around
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
s may impact the organism. Some base substitutions lead to synonymous mutation and no difference in the amino acid translated as noted above. However, a base substitution can also change the
genetic code Genetic code is a set of rules used by living cell (biology), cells to Translation (biology), translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished ...
so that a different amino acid is translated. This sort of substitution usually has a negative effect on the protein being formed and will be eliminated from the population through
purifying selection In natural selection, negative selection or purifying selection is the selective removal of alleles that are deleterious. This can result in stabilising selection through the purging of deleterious genetic polymorphisms that arise through random ...
. However, if the change has a positive influence, the mutation may become more and more common in a population until it becomes a fixed genetic piece of that population. Organisms changing via these two options comprise the classic view of natural selection. A third possibility is that the amino acid substitution makes little or no positive or negative difference to the affected protein. Proteins demonstrate some tolerance to changes in amino acid structure. This is somewhat dependent on where in the protein the substitution takes place. If it occurs in an important structural area or in the
active site In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the ''binding s ...
, one amino acid substitution may inactivate or substantially change the functionality of the protein. Substitutions in other areas may be nearly neutral and drift randomly over time.


Identification and measurement of neutrality

Neutral mutations are measured in population and evolutionary genetics often by looking at variation in populations. These have been measured historically by
gel electrophoresis Gel electrophoresis is an electrophoresis method for separation and analysis of biomacromolecules (DNA, RNA, proteins, etc.) and their fragments, based on their size and charge through a gel. It is used in clinical chemistry to separate ...
to determine allozyme frequencies. Statistical analyses of this data is used to compare variation to predicted values based on population size, mutation rates and effective population size. Early observations that indicated higher than expected
heterozygosity Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mos ...
and overall variation within the protein isoforms studied, drove arguments as to the role of selection in maintaining this variation versus the existence of variation through the effects of neutral mutations arising and their random distribution due to genetic drift. The accumulation of data based on observed polymorphism led to the formation of the neutral theory of evolution. According to the neutral theory of evolution, the rate of fixation in a population of a neutral mutation will be directly related to the rate of formation of the neutral allele. In Kimura’s original calculations, mutations with , 2 N''s'', <1 or , ''s'', ≤1/(2N) are defined as neutral. In this equation, N is the
effective population size The effective population size (''N'e'') is the size of an idealised population that would experience the same rate of genetic drift as the real population. Idealised populations are those following simple one- locus models that comply with ass ...
and is a quantitative measurement of the ideal population size that assumes such constants as equal sex ratios and no emigration, migration, mutation nor selection. Conservatively, it is often assumed that effective population size is approximately one fifth of the total population size. ''s'' is the
selection coefficient Selection coefficient, usually denoted by the letter ''s'', is a measure used in population genetics to quantify the relative fitness of a genotype compared to other genotypes. Selection coefficients are central to the quantitative description of ...
and is a value between 0 and 1. It is a measurement of the contribution of a genotype to the next generation where a value of 1 would be completely selected against and make no contribution and 0 is not selected against at all. This definition of neutral mutation has been criticized due to the fact that very large effective population sizes can make mutations with small selection coefficients appear non neutral. Additionally, mutations with high selection coefficients can appear neutral in very small populations. The testable hypothesis of Kimura and others showed that polymorphism within species are approximately that which would be expected in a neutral evolutionary model. For many molecular biology approaches, as opposed to mathematical genetics, neutral mutations are generally assumed to be those mutations that cause no appreciable effect on gene function. This simplification eliminates the effect of minor allelic differences in fitness and avoids problems when a selection has only a minor effect. Early convincing evidence of this definition of neutral mutation was shown through the lower mutational rates in functionally important parts of genes such as cytochrome c versus less important parts and the functionally interchangeable nature of mammalian cytochrome c in in vitro studies. Nonfunctional pseudogenes provide more evidence for the role of neutral mutations in evolution. The rates of mutation in mammalian globin pseudogenes has been shown to be much higher than rates in functional genes. According to neo-Darwinian evolution, such mutations should rarely exist as these sequences are functionless and positive selection would not be able to operate. The McDonald–Kreitman test has been used to study selection over long periods of evolutionary time. This is a statistical test that compares polymorphism in neutral and functional sites and estimates what fraction of substitutions have been acted on by positive selection. The test often uses synonymous substitutions in protein coding genes as the neutral component; however, synonymous mutations have been shown to be under purifying selection in many instances.


Molecular clocks

Molecular clock The molecular clock is a figurative term for a technique that uses the mutation rate of biomolecules to deduce the time in prehistory when two or more life forms diverged. The biomolecular data used for such calculations are usually nucleot ...
s can be used to estimate the amount of time since divergence of two species and for placing evolutionary events in time. Pauling and Zuckerkandl, proposed the idea of the molecular clock in 1962 based on the observation that the random mutation process occurs at an approximate constant rate. Individual proteins were shown to have linear rates of amino acid changes over evolutionary time. Despite controversy from some biologists arguing that morphological evolution would not proceed at a constant rate, many amino acid changes were shown to accumulate in a constant fashion. Kimura and Ohta explained these rates as part of the framework of the neutral theory. These mutations were reasoned to be neutral as positive selection should be rare and deleterious mutations should be eliminated quickly from a population. By this reasoning, the accumulation of these neutral mutations should only be influenced by the mutation rate. Therefore, the neutral mutation rate in individual organisms should match the molecular evolution rate in species over evolutionary time. The neutral mutation rate is affected by the amount of neutral sites in a protein or DNA sequence versus the amount of mutation in sites that are functionally constrained. By quantifying these neutral mutations in protein and/or DNA and comparing them between species or other groups of interest, rates of divergence can be determined. Molecular clocks have caused controversy due to the dates they derive for events such as explosive radiations seen after extinction events like the Cambrian explosion and the radiations of mammals and birds. Two-fold differences exist in dates derived from molecular clocks and the fossil record. While some paleontologists argue that molecular clocks are systemically inaccurate, others attribute the discrepancies to lack of robust fossil data and bias in sampling. While not without constancy and discrepancies with the fossil record, the data from molecular clocks have shown how evolution is dominated by the mechanisms of a neutral model and is less influenced by the action of natural selection.


See also

* Codon degeneracy *
Silent mutation Silent mutations, also called synonymous or samesense mutations, are mutations in DNA that do not have an observable effect on the organism's phenotype. The phrase ''silent mutation'' is often used interchangeably with the phrase '' synonymous mut ...


References


External links


Standard and generalized McDonald-Kreitman test

Neutrality and Molecular Clocks
{{DEFAULTSORT:Neutral Mutation Mutation Evolutionary biology Neutral theory