
Nested polymerase chain reaction (nested PCR) is a modification of
polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) ...
intended to reduce non-specific binding in products due to the amplification of unexpected primer binding sites.
Polymerase chain reaction
Polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) ...
itself is the process used to amplify
DNA samples, via a temperature-mediated
DNA polymerase
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create ...
. The products can be used for
sequencing
In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succi ...
or analysis, and this process is a key part of many
genetics
Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar worki ...
research laboratories, along with uses in
DNA fingerprinting
DNA profiling (also called DNA fingerprinting) is the process of determining an individual's DNA characteristics. DNA analysis intended to identify a species, rather than an individual, is called DNA barcoding.
DNA profiling is a forensic te ...
for
forensics and other human genetic cases. Conventional PCR requires
primers complementary to the termini of the target DNA. The amount of product from the PCR increases with the number of temperature cycles that the reaction is subjected to. A commonly occurring problem is primers binding to incorrect regions of the DNA, giving unexpected products. This problem becomes more likely with an increased number of cycles of PCR.
Primers
Nested polymerase chain reaction involves two sets of primers, used in two successive runs of polymerase chain reaction, the second set intended to amplify a secondary target within the first run product. This allows amplification for a low number of runs in the first round, limiting non-specific products. The second nested primer set should only amplify the intended product from the first round of amplification and not non-specific product. This allows running more total cycles while minimizing non-specific products. This is useful for rare templates or PCR with high background.
Processes
The target DNA undergoes the first run of polymerase chain reaction with the first set of primers, shown in green. The selection of alternative and similar primer binding sites gives a selection of products, only one containing the intended sequence.
The product from the first reaction undergoes a second run with the second set of primers, shown in red. It is very unlikely that any of the unwanted PCR products contain binding sites for both the new primers, ensuring the product from the second PCR has little contamination from unwanted products.
References
{{Portal bar, Biology
Molecular biology
Laboratory techniques
Amplifiers
Polymerase chain reaction