HOME

TheInfoList



OR:

Naimark's problem is a question in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined ...
asked by . It asks whether every
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continu ...
that has only one irreducible * -representation up to unitary equivalence is isomorphic to the * -algebra of
compact operator In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact ...
s on some (not necessarily separable)
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natu ...
. The problem has been solved in the affirmative for special cases (specifically for separable and Type-I C*-algebras). used the \diamondsuit -Principle to construct a
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continu ...
with \aleph_ generators that serves as a counterexample to Naimark's Problem. More precisely, they showed that the existence of a counterexample generated by \aleph_ elements is independent of the axioms of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
and the
Axiom of Choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
( \mathsf ). Whether Naimark's problem itself is independent of \mathsf remains unknown.


See also

* List of statements undecidable in \mathsf *
Gelfand–Naimark Theorem In mathematics, the Gelfand–Naimark theorem states that an arbitrary C*-algebra ''A'' is isometrically *-isomorphic to a C*-subalgebra of bounded operators on a Hilbert space. This result was proven by Israel Gelfand and Mark Naimark in 194 ...


References

* * * Conjectures C*-algebras Independence results Unsolved problems in mathematics {{Mathanalysis-stub