NEDD8 Activating E1 Enzyme
   HOME

TheInfoList



OR:

NEDD8 is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''NEDD8''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. (in ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'' this protein is known as Rub1) This ubiquitin-like (UBL) protein becomes covalently conjugated to a limited number of cellular proteins, in a process called NEDDylation similar to
ubiquitination Ubiquitin is a small (8.6  kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
. Human NEDD8 shares 60% amino acid sequence identity to ubiquitin. The primary known substrates of NEDD8 modification are the
cullin Cullins are a family of hydrophobic scaffold proteins which provide support for ubiquitin ligases (E3). All eukaryotes appear to have cullins. They combine with RING proteins to form ''Cullin-RING ubiquitin ligases'' (CRLs) that are highly div ...
subunits of cullin-based E3 ubiquitin ligases, which are active only when NEDDylated. Their NEDDylation is critical for the recruitment of E2 to the ligase complex, thus facilitating ubiquitin conjugation. NEDD8 modification has therefore been implicated in cell cycle progression and cytoskeletal regulation.


Activation and conjugation

As with ubiquitin and SUMO, NEDD8 is conjugated to cellular proteins after its C-terminal tail is processed. The NEDD8 activating E1 enzyme is a heterodimer composed of
APPBP1 NEDD8-activating enzyme E1 regulatory subunit is a protein that in humans is encoded by the ''NAE1'' gene. Function The protein encoded by this gene binds to the beta-amyloid precursor protein. Beta-amyloid precursor protein is a cell surface ...
and UBA3 subunits. The
APPBP1 NEDD8-activating enzyme E1 regulatory subunit is a protein that in humans is encoded by the ''NAE1'' gene. Function The protein encoded by this gene binds to the beta-amyloid precursor protein. Beta-amyloid precursor protein is a cell surface ...
/UBA3 enzyme has homology to the N- and C-terminal halves of the ubiquitin E1 enzyme, respectively. The UBA3 subunit contains the catalytic center and activates NEDD8 in an ATP-dependent reaction by forming a high-energy thiolester intermediate. The activated NEDD8 is subsequently transferred to the UbcH12 E2 enzyme, and is then conjugated to specific substrates in the presence of the appropriate E3 ligases.


Substrates for NEDD8

As reviewed by Brown et al., the best-characterized activated-NEDD8 substrates are the
cullin Cullins are a family of hydrophobic scaffold proteins which provide support for ubiquitin ligases (E3). All eukaryotes appear to have cullins. They combine with RING proteins to form ''Cullin-RING ubiquitin ligases'' (CRLs) that are highly div ...
s (CUL1, 2, 3, 4A, 4B, 5, and 7 and PARC in human cells), that serve as molecular scaffolds for cullin-
RING (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
ubiquitin ligase A ubiquitin ligase (also called an E3 ubiquitin ligase) is a protein that recruits an E2 ubiquitin-conjugating enzyme that has been loaded with ubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin ...
s (CRLs). Neddylation results in
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
conjugation of a NEDD8 moiety onto a conserved cullin
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group ( ...
residue. Cullin neddylation increases CRL ubiquitylation activity via conformational changes that optimize ubiquitin transfer to target proteins


Removal

There are several different proteases which can remove NEDD8 from protein conjugates. UCHL1, UCHL3 and USP21 proteases have dual specificity for NEDD8 and ubiquitin. Proteases specific for NEDD8 removal are the COP9 signalosome which removes NEDD8 from the CUL1 subunit of SCF ubiquitin ligases, and NEDP1 (or DEN1, SENP8).


Role in DNA repair

As shown by Brown et al., NEDD8 accumulation at DNA-damage sites is a highly dynamic process. Neddylation is needed during a short period of the global genome repair (GGR) sub-pathway of DNA
nucleotide excision repair Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. Intercalation (biochemistry), intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single ...
(NER). In GGR of NER, after DNA damage is caused by UV irradiation, Cul4A in the DNA damage binding protein 2 (
DDB2 DNA damage-binding protein 2 is a protein that in humans is encoded by the ''DDB2'' gene. Structure As indicated by Rapić-Otrin et al. in 2003, the ''DDB2'' gene is located on human chromosome 11p11.2, spans a region of approximately 24 – 26 ...
) complex is activated by NEDD8, and this allows GGR-NER to proceed to remove the damage. Neddylation also has a role in repair of double-strand breaks.
Non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair ...
(NHEJ) is a DNA repair pathway frequently used to repair DNA double-strand breaks. The first step in this pathway depends on the Ku70/Ku80 heterodimer that forms a highly stable ring structure encircling DNA ends. But the Ku heterodimer needs to be removed when NHEJ is completed, or it blocks transcription or replication. The Ku heterodimer is ubiquitylated in a DNA-damage and neddylation-dependent manner to promote the release of Ku and other NHEJ factors from the site of repair after the process is completed.


In cancer chemotherapy

As discussed by Jin and Roberston in their review, silencing of a DNA repair gene by hyper
methylation Methylation, in the chemistry, chemical sciences, is the addition of a methyl group on a substrate (chemistry), substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replac ...
of its promoter may be a very early step in progression to cancer. Gene silencing of a DNA repair gene at the transcription level is proposed to act similarly to a germ-line mutation in a DNA repair gene. Loss of DNA repair capability by either mechanism introduces
genome instability Genome instability (also genetic instability or genomic instability) refers to a high frequency of mutations within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences, chromosomal rearrangements or ...
and predisposes the cell and its descendants to progression to cancer.
Epigenetically In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
silenced DNA repair genes occur frequently in the 17 most common cancers (see e.g. Frequency of hypermethylation of DNA repair genes in cancer). As discussed above, activated-NEDD8 is needed in two DNA repair pathways: NER and NHEJ. If activation of NEDD8 is inhibited, cells with induced deficiency of NER or NHEJ may then die because of deficient DNA repair leading to accumulation of DNA damages. The effect of NEDD8 inhibition may be greater for cancer cells than for normal cells if the cancer cells are independently deficient in DNA repair due to prior epigenetic silencing of DNA repair genes active in alternative pathways (see
synthetic lethality Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death or death of an organism. Although the foregoing explanation is wider than this, it is common when referring to synthet ...
). Pevonedistat (MLN4924), a drug inhibiting activation of NEDD8, has shown a significant therapeutic effect in four Phase I clinical cancer trials in 2015-2016. These include pevonedistat trials against acute myeloid leukemia and myelodysplastic syndromes, relapsed/refractory multiple myeloma or lymphoma, metastatic melanoma, and advanced solid tumors.


In preclinical studies


PPARγ neddylation

PPARγ Peroxisome proliferator-activated receptor gamma (PPAR-γ or PPARG), also known as the glitazone reverse insulin resistance receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a type II nuclear receptor functioning as a transc ...
has a crucial role in
adipogenesis Adipogenesis is the formation of adipocytes (fat cells) from stem cells. It involves 2 phases, determination, and terminal differentiation. Determination is mesenchymal stem cells committing to the adipocyte precursor cells, also known as lipoblast ...
and lipid accumulation within
adipocyte Adipocytes, also known as lipocytes and fat cells, are the cell (biology), cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through ...
s (fat cells). Activated NEDD8 stabilizes PPARγ, allowing increased adipogenesis. In experiments with mice, Pevonedistat, a drug inhibiting activation of NEDD8, prevented high-fat diet-induced obesity and glucose intolerance.


NF-κB and NEDD8

The transcriptional activity of NF-κB is primarily regulated by physical interaction with inhibitory IκB proteins (IκBα and IκBβ), which prevents its nuclear translocation. Degradation of the IκBα subunit of IκB is mediated by ubiquitination, and this ubiquitination depends on neddylation. Pevonedistat (MLN4924) inhibits activation of NEDD8, that then inhibits ubiquitination of IκBα, and this inhibits NF-κB translocation to the nucleus. Pevonedistat, through its effects on NF-κB and a target of NF-κB (microRNA-155), prolonged the survival of mice engrafted with leukemic cells.


Colorectal cancer

Inhibition of NEDD8 activation by pevonedistat was found to induce growth arrest and apoptosis in 16/122 (13%)
colorectal cancer Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the Colon (anatomy), colon or rectum (parts of the large intestine). Signs and symptoms may include Lower gastrointestinal ...
(CRC) cell lines. Further analyses in patient-derived tumor xenografts revealed that pevonedistat is effective on poorly differentiated, high-grade mucinous CRC.


Interactions

NEDD8 has been shown to interact with: *
Aryl hydrocarbon receptor The aryl hydrocarbon receptor (also known as AhR, AHR, ahr, ahR, AH receptor, or as the dioxin receptor) is a protein that in humans is encoded by the AHR gene. The aryl hydrocarbon receptor is a transcription factor that regulates gene express ...
, * NUB1, * UBE1C, * UBE2M, and * UCHL3.


References


Further reading

* * * * * * * * * * * * * * * * * * * {{PDB Gallery, geneid=4738 Human proteins