HOME

TheInfoList



OR:

Molecular paleontology refers to the recovery and analysis of DNA,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
s,
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or ...
s, or
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids incl ...
s, and their diagenetic products from ancient human, animal, and plant remains. The field of molecular paleontology has yielded important insights into evolutionary events, species'
diaspora A diaspora ( ) is a population that is scattered across regions which are separate from its geographic place of origin. Historically, the word was used first in reference to the dispersion of Greeks in the Hellenic world, and later Jews afte ...
s, the discovery and characterization of extinct
species In biology, a species is the basic unit of Taxonomy (biology), classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of ...
. loo In shallow time, advancements in the field of molecular paleontology have allowed scientists to pursue
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
ary questions on a genetic level rather than relying on
phenotypic In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological proper ...
variation alone. By applying molecular analytical techniques to DNA in Recent animal remains, one can quantify the level of relatedness between any two organisms for which DNA has been recovered. Using various biotechnological techniques such as DNA isolation, amplification, and
sequencing In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succi ...
scientists have been able to gain expanded new insights into the divergence and evolutionary history of countless recently extinct organisms. In February 2021, scientists reported, for the first time, the
sequencing In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succi ...
of DNA from animal remains, a
mammoth A mammoth is any species of the extinct elephantid genus ''Mammuthus'', one of the many genera that make up the order of trunked mammals called proboscideans. The various species of mammoth were commonly equipped with long, curved tusks and ...
in this instance, over a million years old, the oldest DNA sequenced to date. In
deep time Deep time is a term introduced and applied by John McPhee to the concept of geologic time in his book ''Basin and Range'' (1981), parts of which originally appeared in the '' New Yorker'' magazine. The philosophical concept of geological time ...
, compositional heterogeneities in carbonaceous remains of a diversity of
animal Animals are multicellular, eukaryotic organisms in the Kingdom (biology), biological kingdom Animalia. With few exceptions, animals Heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, are Motilit ...
s, ranging in age from the
Neoproterozoic The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago. It is the last era of the Precambrian Supereon and the Proterozoic Eon; it is subdivided into the Tonian, Cryogenian, and Ediacaran periods. It is ...
to the
Recent The Holocene ( ) is the current geological epoch. It began approximately 11,650 cal years Before Present (), after the Last Glacial Period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together ...
, have been linked to biological signatures encoded in modern
biomolecule A biomolecule or biological molecule is a loosely used term for molecules present in organisms that are essential to one or more typically biological processes, such as cell division, morphogenesis, or development. Biomolecules include larg ...
s via a cascade of oxidative fossilization reactions. The macromolecular composition of carbonaceous fossils, some
Tonian The Tonian (from grc, τόνος, tónos, meaning "stretch") is the first geologic period of the Neoproterozoic Era. It lasted from to Mya (million years ago). Instead of being based on stratigraphy, these dates are defined by the ICS based o ...
in age, preserve biological signatures reflecting original
biomineralization Biomineralization, also written biomineralisation, is the process by which living organisms produce minerals, often to harden or stiffen existing tissues. Such tissues are called mineralized tissues. It is an extremely widespread phenomenon; ...
, tissue types,
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
, and relationship affinities (
phylogeny A phylogenetic tree (also phylogeny or evolutionary tree Felsenstein J. (2004). ''Inferring Phylogenies'' Sinauer Associates: Sunderland, MA.) is a branching diagram or a tree showing the evolutionary relationships among various biological spe ...
).


History

The study of molecular paleontology is said to have begun with the discovery by Abelson of 360 million year old amino acids preserved in fossil shells. However,
Svante Pääbo Svante Pääbo (; born 20 April 1955) is a Swedish geneticist who specialises in the field of evolutionary genetics. As one of the founders of paleogenetics, he has worked extensively on the Neanderthal genome. In 1997, he became founding dir ...
is often the one considered to be the founder of the field of molecular paleontology. The field of molecular paleontology has had several major advances since the 1950s and is a continuously growing field. Below is a timeline showing notable contributions that have been made.


Timeline

mid-1950s: Abelson found preserved amino acids in fossil shells that were about 360 million years old. Produced idea of comparing fossil amino acid sequences with existing organism so that molecular evolution could be studied. 1970s: Fossil peptides are studied by amino acid analysis. Start to use whole peptides and immunological methods. Late 1970s: Palaeobotanists (can also be spelled as Paleobotanists) studied molecules from well-preserved fossil plants. 1984: The first successful DNA sequencing of an extinct species, the quagga, a zebra-like species. 1991: Published article on the successful extraction of proteins from the fossil bone of a dinosaur, specifically the
Seismosaurus ''Diplodocus'' (, , or ) was a genus of diplodocid sauropod dinosaurs, whose fossils were first discovered in 1877 by S. W. Williston. The generic name, coined by Othniel Charles Marsh in 1878, is a neo-Latin term derived from Greek διπ� ...
. 2005: Scientists resurrect extinct
1918 influenza virus This year is noted for the end of the World War I, First World War, on the eleventh hour of the eleventh day of the eleventh month, as well as for the Spanish flu pandemic that killed 50–100 million people worldwide. Events Belo ...
. 2006: Neanderthals nuclear DNA sequence segments begin to be analyzed and published. 2007: Scientists synthesize entire extinct human endogenous retrovirus (HERV-K) from scratch. 2010: A new species of early hominid, the
Denisovans The Denisovans or Denisova hominins ) are an extinct species or subspecies of archaic human that ranged across Asia during the Lower and Middle Paleolithic. Denisovans are known from few physical remains and consequently, most of what is kn ...
, discovered from mitochondrial and nuclear genomes recovered from bone found in a cave in Siberia. Analysis showed that the Denisovan specimen lived approximately 41,000 years ago, and shared a common ancestor with both modern humans and Neanderthals approximately 1 million years ago in Africa. 2013: The first entire Neanderthal genome is successfully sequenced. More information can be found at the Neanderthal genome project. 2013: A 400,000-year-old specimen with remnant mitochondrial DNA sequenced and is found to be a common ancestor to Neanderthals and Denisovans, ''
Homo heidelbergensis ''Homo heidelbergensis'' (also ''H. sapiens heidelbergensis''), sometimes called Heidelbergs, is an extinct species or subspecies of archaic human which existed during the Middle Pleistocene. It was subsumed as a subspecies of '' H. erectus'' ...
''. 2015: A 110,000-year-old fossil tooth containing DNA from
Denisovans The Denisovans or Denisova hominins ) are an extinct species or subspecies of archaic human that ranged across Asia during the Lower and Middle Paleolithic. Denisovans are known from few physical remains and consequently, most of what is kn ...
was reported. 2018: Molecular Paleobiologists link polymers of N-, O-, S-heterocycle composition in carbonaceous fossil remains mechanistically to structural biomolecules in original tissues. Through oxidative crosslinking, a process similar to the Maillard reaction,
nucleophilic In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they a ...
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
residues condense with Reactive Carbonyl Species derived from
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids incl ...
s and
sugars Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double ...
. The processes of biomolecule fossilization, identified via
Raman spectroscopy Raman spectroscopy () (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman s ...
of modern and fossil tissues, experimental modelling, and statistical data evaluation, include Advanced Glycosylation and Advanced Lipoxidation. 2019: An independent laboratory of Molecular Paleontologists confirms the transformation of biomolecules through Advanced Glycosylation and Lipoxidation during fossilization. The authors use
Synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed p ...
Fourier-Transform Infrared spectroscopy Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectra ...
. 2020: Wiemann and colleagues identify biological signatures reflecting original
biomineralization Biomineralization, also written biomineralisation, is the process by which living organisms produce minerals, often to harden or stiffen existing tissues. Such tissues are called mineralized tissues. It is an extremely widespread phenomenon; ...
, tissue types,
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
, and relationship affinity (
phylogeny A phylogenetic tree (also phylogeny or evolutionary tree Felsenstein J. (2004). ''Inferring Phylogenies'' Sinauer Associates: Sunderland, MA.) is a branching diagram or a tree showing the evolutionary relationships among various biological spe ...
) in preserved compositional heterogeneities of a diversity of carbonaceous
animal Animals are multicellular, eukaryotic organisms in the Kingdom (biology), biological kingdom Animalia. With few exceptions, animals Heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, are Motilit ...
fossils. This is the first large-scale analysis of fossils ranging in age from the
Neoproterozoic The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago. It is the last era of the Precambrian Supereon and the Proterozoic Eon; it is subdivided into the Tonian, Cryogenian, and Ediacaran periods. It is ...
to the
Recent The Holocene ( ) is the current geological epoch. It began approximately 11,650 cal years Before Present (), after the Last Glacial Period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together ...
, and the first published record of biological signals found in complex organic matter. The authors rely on statistical analyses of a uniquely large
Raman spectroscopy Raman spectroscopy () (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman s ...
data set. 2021: Geochemists find tissue type signals in the composition of carbonaceous fossils dating back to the
Tonian The Tonian (from grc, τόνος, tónos, meaning "stretch") is the first geologic period of the Neoproterozoic Era. It lasted from to Mya (million years ago). Instead of being based on stratigraphy, these dates are defined by the ICS based o ...
, and apply these signals to identify epibionts. The authors use
Raman spectroscopy Raman spectroscopy () (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman s ...
. 2022:
Raman spectroscopy Raman spectroscopy () (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman s ...
data revealing patterns in the fossilization of structural biomolecules have been replicated with
Fourier-Transform Infrared spectroscopy Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectra ...
and a diversity of different Raman instruments, filters, and excitation sources.


The quagga

The first successful DNA sequencing of an extinct species was in 1984, from a 150-year-old museum specimen of the quagga, a zebra-like species. Mitochondrial DNA (also known as mtDNA) was sequenced from desiccated muscle of the quagga, and was found to differ by 12 base substitutions from the mitochondrial DNA of a mountain zebra. It was concluded that these two species had a common ancestor 3-4 million years ago, which is consistent with known
fossil A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
evidence of the species.


Denisovans

The Denisovans of
Eurasia Eurasia (, ) is the largest continental area on Earth, comprising all of Europe and Asia. Primarily in the Northern and Eastern Hemispheres, it spans from the British Isles and the Iberian Peninsula in the west to the Japanese archipelag ...
, a hominid species related to Neanderthals and humans, was discovered as a direct result of DNA sequencing of a 41,000-year-old specimen recovered in 2008. Analysis of the mitochondrial DNA from a retrieved finger bone showed the specimen to be genetically distinct from both humans and Neanderthals. Two teeth and a toe bone were later found to belong to different individuals with the same population. Analysis suggests that both the Neanderthals and Denisovans were already present throughout Eurasia when modern humans arrived. In November 2015, scientists reported finding a fossil tooth containing DNA from Denisovans, and estimated its age at 110,000-years-old.


Mitochondrial DNA analysis

The mtDNA from the Denisovan finger bone differs from that of modern humans by 385 bases (
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecul ...
s) in the mtDNA strand out of approximately 16,500, whereas the difference between modern humans and Neanderthals is around 202 bases. In contrast, the difference between chimpanzees and modern humans is approximately 1,462 mtDNA base pairs. This suggested a divergence time around one million years ago. The mtDNA from a tooth bore a high similarity to that of the finger bone, indicating they belonged to the same population. From a second tooth, an mtDNA sequence was recovered that showed an unexpectedly large number of genetic differences compared to that found in the other tooth and the finger, suggesting a high degree of mtDNA diversity. These two individuals from the same cave showed more diversity than seen among sampled Neanderthals from all of Eurasia, and were as different as modern-day humans from different continents.


Nuclear genome analysis

Isolation and sequencing of nuclear DNA has also been accomplished from the Denisova finger bone. This specimen showed an unusual degree of DNA preservation and low level of contamination. They were able to achieve near-complete genomic sequencing, allowing a detailed comparison with Neanderthal and modern humans. From this analysis, they concluded, in spite of the apparent divergence of their mitochondrial sequence, the Denisova population along with Neanderthal shared a common branch from the lineage leading to modern African humans. The estimated average time of divergence between Denisovan and Neanderthal sequences is 640,000 years ago, and the time between both of these and the sequences of modern Africans is 804,000 years ago. They suggest the divergence of the Denisova mtDNA results either from the persistence of a lineage purged from the other branches of humanity through
genetic drift Genetic drift, also known as allelic drift or the Wright effect, is the change in the frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene variants to disappear completely and there ...
or else an
introgression Introgression, also known as introgressive hybridization, in genetics is the transfer of genetic material from one species into the gene pool of another by the repeated backcrossing of an interspecific hybrid with one of its parent species. Intro ...
from an older hominin lineage.


Homo heidelbergensis

Homo heidelbergensis was first discovered in 1907 near Heidelberg, Germany and later also found elsewhere in Europe, Africa, and Asia. However it was not until 2013 that a specimen with retrievable DNA was found, in a ~400,000 year old femur found in the Sima de los Huesos Cave in Spain. The femur was found to contain both mtDNA and nuclear DNA. Improvements in DNA extraction and library preparation techniques allowed for mtDNA to be successfully isolated and sequenced, however the nuclear DNA was found to be too degraded in the observed specimen, and was also contaminated with DNA from an ancient cave bear ('' Ursus deningeri'') present in the cave. The mtDNA analysis found a surprising link between the specimen and the Denisovans, and this finding raised many questions. Several scenarios were proposed in a January 2014 paper titled "A mitochondrial genome sequence of a hominin from Sima de los Huesos", elucidating the lack of convergence in the scientific community on how ''Homo heidelbergensis'' is related to other known hominin groups. One plausible scenario that the authors proposed was that the ''H. heidelbergensis'' was an ancestor to both Denisovans and Neanderthals. Completely sequenced nuclear genomes from both Denisovans and Neanderthals suggest a common ancestor approximately 700,000 years ago, and one leading researcher in the field, Svante Paabo, suggests that perhaps this new hominin group is that early ancestor.


Applications


Discovery and characterization of new species

Molecular paleontology techniques applied to fossils have contributed to the discovery and characterization of several new species, including the Denisovans and ''Homo heidelbergensis''. We have been able to better understand the path that humans took as they populated the earth, and what species were present during this
diaspora A diaspora ( ) is a population that is scattered across regions which are separate from its geographic place of origin. Historically, the word was used first in reference to the dispersion of Greeks in the Hellenic world, and later Jews afte ...
.


De-extinction

It is now possible to revive extinct species using molecular paleontology techniques. This was first accomplished via
cloning Cloning is the process of producing individual organisms with identical or virtually identical DNA, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction. In the field of biotechnology, c ...
in 2003 with the Pyrenean ibex, a type of wild goat that became extinct in 2000. Nuclei from the Pyrenean ibex's cells were injected into goat eggs emptied of their own DNA, and implanted into surrogate goat mothers. The offspring lived only seven minutes after birth, due to defects in its lungs. Other cloned animals have been observed to have similar lung defects. There are many species that have gone extinct as a direct result of human activity. Some examples include the
dodo The dodo (''Raphus cucullatus'') is an extinct flightless bird that was endemic to the island of Mauritius, which is east of Madagascar in the Indian Ocean. The dodo's closest genetic relative was the also-extinct Rodrigues solitaire. The ...
, the
great auk The great auk (''Pinguinus impennis'') is a species of flightless alcid that became extinct in the mid-19th century. It was the only modern species in the genus ''Pinguinus''. It is not closely related to the birds now known as penguins, w ...
, the Tasmanian tiger, the Chinese river dolphin, and the
passenger pigeon The passenger pigeon or wild pigeon (''Ectopistes migratorius'') is an extinct species of pigeon that was endemic to North America. Its common name is derived from the French word ''passager'', meaning "passing by", due to the migratory habit ...
. An extinct species can be revived by using
allelic An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chrom ...
replacement of a closely related species that is still living. By only having to replace a few
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s within an organism, instead of having to build the extinct species' genome from scratch, it could be possible to bring back several species in this way, even Neanderthals. The ethics surrounding the re-introduction of extinct species are very controversial. Critics of bringing extinct species back to life contend that it would divert limited money and resources from protecting the world's current
biodiversity Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic ('' genetic variability''), species ('' species diversity''), and ecosystem ('' ecosystem diversity' ...
problems. With current extinction rates approximated to be 100 to 1,000 times the background extinction rate, it is feared that a de-extinction program might lessen public concerns over the current mass extinction crisis, if it is believed that these species can simply be brought back to life. As the editors of a Scientific American article on de-extinction pose: Should we bring back the woolly mammoth only to let elephants become extinct in the meantime? The main driving factor for the extinction of most species in this era (post 10,000 BC) is the loss of habitat, and temporarily bringing back an extinct species will not recreate the environment they once inhabited. Proponents of de-extinction, such as George Church, speak of many potential benefits. Reintroducing an extinct keystone species, such as the
woolly mammoth The woolly mammoth (''Mammuthus primigenius'') is an extinct species of mammoth that lived during the Pleistocene until its extinction in the Holocene epoch. It was one of the last in a line of mammoth species, beginning with '' Mammuthus sub ...
, could help re-balance the ecosystems that once depended on them. Some extinct species could create broad benefits for the environments they once inhabited, if returned. For example, woolly mammoths may be able to slow the melting of the Russian and Arctic tundra in several ways such as eating dead grass so that new grass can grow and take root, and periodically breaking up the snow, subjecting the ground below to the arctic air. These techniques could also be used to reintroduce genetic diversity in a threatened species, or even introduce new genes and traits to allow the animals to compete better in a changing environment.


Research and technology

When a new potential specimen is found, scientists normally first analyze for cell and tissue preservation using histological techniques, and test the conditions for the survivability of DNA. They will then attempt to isolate a DNA sample using the technique described below, and conduct a
PCR amplification The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) ...
of the DNA to increase the amount of DNA available for testing. This amplified DNA is then sequenced. Care is taken to verify that the sequence matches the phylogenetic traits of the organism. When an organism dies, a technique called amino acid dating can be used to age the organism. It inspects the degree of
racemization In chemistry, racemization is a conversion, by heat or by chemical reaction, of an optically active compound into a racemic (optically inactive) form. This creates a 1:1 molar ratio of enantiomers and is referred too as a racemic mixture (i.e. con ...
of
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α- amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pr ...
,
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- ...
, and
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side ...
within the tissue. As time passes, the D/L ratio (where "D" and "L" are mirror images of each other) increase from 0 to 1. In samples where the D/L ratio of aspartic acid is greater than 0.08, ancient DNA sequences can not be retrieved (as of 1996).


Mitochondrial DNA vs. nuclear DNA

Mitochondrial DNA (mtDNA) is separate from one's nuclear DNA. It is present in
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' t ...
s called mitochondria in each cell. Unlike
nuclear DNA Nuclear DNA (nDNA), or nuclear deoxyribonucleic acid, is the DNA contained within each cell nucleus of a eukaryotic organism. It encodes for the majority of the genome in eukaryotes, with mitochondrial DNA and plastid DNA coding for the rest. ...
, which is inherited from both parents and rearranged every generation, an exact copy of mitochondrial DNA gets passed down from mother to her sons and daughters. The benefits of performing DNA analysis with Mitochondrial DNA is that it has a far smaller mutation rate than nuclear DNA, making tracking lineages on the scale of tens of thousands of years much easier. Knowing the base mutation rate for mtDNA, (in humans this rate is also known as the
Human mitochondrial molecular clock The human mitochondrial molecular clock is the rate at which mutations have been accumulating in the mitochondrial genome of hominids during the course of human evolution. The archeological record of human activity from early periods in human prehis ...
) one can determine the amount of time any two lineages have been separated. Another advantage of mtDNA is that thousands of copies of it exist in every cell, whereas only two copies of nuclear DNA exist in each cell. All
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
s, a group which includes all plants, animals, and fungi, have mtDNA. A disadvantage of mtDNA is that only the maternal line is represented. For example, a child will inherit 1/8 of its DNA from each of its eight great-grandparents, however it will inherit an exact clone of its maternal great-grandmother's mtDNA. This is analogous to a child inheriting only his paternal great-grandfather's last name, and not a mix of all of the eight surnames.


Isolation

There are many things to consider when isolating a substance. First, depending upon what it is and where it is located, there are protocols that must be carried out in order to avoid contamination and further degradation of the sample. Then, handling of the materials is usually done in a physically isolated work area and under specific conditions (i.e. specific Temperature, moisture, etc...) also to avoid contamination and further loss of sample. Once the material has been obtained, depending on what it is, there are different ways to isolate and purify it. DNA extraction from fossils is one of the more popular practices and there are different steps that can be taken to get the desired sample. DNA extracted from amber-entombed
fossils A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
can be taken from small samples and mixed with different substances, centrifuged, incubated, and centrifuged again. On the other hand, DNA extraction from insects can be done by grinding the sample, mixing it with buffer, and undergoing purification through glass fiber columns. In the end, regardless of how the sample was isolated for these fossils, the DNA isolated must be able to undergo amplification.


Amplification

The field of molecular paleontology benefited greatly from the invention of the polymerase chain reaction(PCR), which allows one to make billions of copies of a DNA fragment from just a single preserved copy of the DNA. One of the biggest challenges up until this point was the extreme scarcity of recovered DNA because of degradation of the DNA over time.


Sequencing

DNA sequencing is done to determine the order of nucleotides and genes. There are many different materials from which DNA can be extracted. In animals, the mitochondrial chromosome can be used for molecular study.
Chloroplasts A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it i ...
can be studied in plants as a primary source of sequence data. In the end, the sequences generated are used to build evolutionary trees. Methods to match data sets include: maximum probability, minimum evolution (also known as neighbor-joining) which searches for the tree with shortest overall length, and the maximum parsimony method which finds the tree requiring the fewest character-state changes. The groups of species defined within a tree can also be later evaluated by statistical tests, such as the
bootstrap method Bootstrapping is any test or metric that uses random sampling with replacement (e.g. mimicking the sampling process), and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy (bias, variance, confidenc ...
, to see if they are indeed significant.


Limitations and challenges

Ideal environmental conditions for preserving DNA where the organism was desiccated and uncovered are difficult to come by, as well as maintaining their condition until analysis. Nuclear DNA normally degrades rapidly after death by
endogenous Endogenous substances and processes are those that originate from within a living system such as an organism, tissue, or cell. In contrast, exogenous substances and processes are those that originate from outside of an organism. For example, ...
hydrolytic processes, by UV radiation, and other environmental stressors. Also, interactions with the organic breakdown products of surrounding soil have been found to help preserve biomolecular materials. However, they have also created the additional challenge of being able to separate the various components in order to be able to conduct the proper analysis on them. Some of these breakdowns have also been found to interfere with the action of some of the enzymes used during PCR. Finally, one of the largest challenge in extracting ancient DNA, particularly in ancient human DNA, is in contamination during PCR. Small amounts of human DNA can contaminate the reagents used for extraction and PCR of ancient DNA. These problems can be overcome by rigorous care in the handling of all solutions as well as the glassware and other tools used in the process. It can also help if only one person performs the extractions, to minimize different types of DNA present.


See also

*
Ancient DNA Ancient DNA (aDNA) is DNA isolated from ancient specimens. Due to degradation processes (including cross-linking, deamination and fragmentation) ancient DNA is more degraded in comparison with contemporary genetic material. Even under the bes ...
* Ancient protein *
Archaeogenetics Archaeogenetics is the study of ancient DNA using various molecular genetic methods and DNA resources. This form of genetic analysis can be applied to human, animal, and plant specimens. Ancient DNA can be extracted from various fossilized specime ...
*
Fossils A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
* Human mitochondrial DNA haplogroups *
Human Y-chromosome DNA haplogroup In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by mutations in the non- recombining portions of DNA from the male-specific Y chromosome (called Y-DNA). Many people within a haplogroup share similar numbers o ...
*
Models of DNA Evolution A number of different Markov models of DNA sequence evolution have been proposed. These substitution models differ in terms of the parameters used to describe the rates at which one nucleotide replaces another during evolution. These models are ...
*
Molecular evolution Molecular evolution is the process of change in the sequence composition of cell (biology), cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and popula ...
*
Paleobiochemistry Paleobiology (or palaeobiology) is an interdisciplinary field that combines the methods and findings found in both the earth sciences and the life sciences. Paleobiology is not to be confused with geobiology, which focuses more on the interacti ...
* Paleobiology *
Paleobotany Paleobotany, which is also spelled as palaeobotany, is the branch of botany dealing with the recovery and identification of plant remains from geological contexts, and their use for the biological reconstruction of past environments (paleogeog ...


References

{{Genetics Paleobiology Evolutionary biology Subfields of paleontology Ancient DNA (human) Fossils