HOME

TheInfoList



OR:

Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, and
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
. It provides a potential means to extend
Moore's Law Moore's law is the observation that the Transistor count, number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and Forecasting, projection of a historical trend. Rather than a law of ...
beyond the foreseen limits of small-scale conventional silicon
integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s.


Molecular scale electronics

Molecular scale
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
, also called single-molecule electronics, is a branch of
nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
that uses single molecules, or nanoscale collections of single molecules, as
electronic component An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singula ...
s. Because single molecules constitute the smallest stable structures possible, this miniaturization is the ultimate goal for shrinking
electrical circuit An electrical network is an interconnection of electrical components (e.g., battery (electricity), batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e. ...
s. Conventional electronic devices are traditionally made from bulk materials. Bulk methods have inherent limits, and are growing increasingly demanding and costly. Thus, the idea was born that the components could instead be built up atom by atom in a chemistry lab (bottom up) as opposed to carving them out of bulk material (top down). In single-molecule electronics, the bulk material is replaced by single molecules. The molecules used have properties that resemble traditional electronic components such as a
wire file:Sample cross-section of high tension power (pylon) line.jpg, Overhead power cabling. The conductor consists of seven strands of steel (centre, high tensile strength), surrounded by four outer layers of aluminium (high conductivity). Sample d ...
,
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
, or
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The process is known as ''rectification'', since it "straightens" t ...
. Single-molecule electronics is an emerging field, and entire electronic circuits consisting exclusively of molecular sized compounds are still very far from being realized. However, the continuous demand for more computing power, together with the inherent limits of the present day lithographic methods make the transition seem unavoidable. Currently, the focus is on discovering molecules with interesting properties and on finding ways to obtain reliable and reproducible contacts between the molecular components and the bulk material of the electrodes. Molecular electronics operates at distances less than 100 nanometers. Miniaturization down to single molecules brings the scale down to a regime where
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
effects are important. In contrast to the case in conventional electronic components, where
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s can be filled in or drawn out more or less like a continuous flow of
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
, the transfer of a single electron alters the system significantly. The significant amount of energy due to charging has to be taken into account when making calculations about the electronic properties of the setup and is highly sensitive to distances to conducting surfaces nearby. One of the biggest problems with measuring on single molecules is to establish reproducible electrical contact with only one molecule and doing so without shortcutting the electrodes. Because the current
photolithographic Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer. The process begins with a photosensit ...
technology is unable to produce electrode gaps small enough to contact both ends of the molecules tested (in the order of nanometers), alternative strategies are used. These include molecular-sized gaps called break junctions, in which a thin electrode is stretched until it breaks. One of the ways to overcome the gap size issue is by trapping molecular functionalized nanoparticles (internanoparticle spacing is matchable to the size of molecules), and later target the molecule by place exchange reaction. Another method is to use the tip of a
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of scanning probe microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in ...
(STM) to contact molecules adhered at the other end to a metal substrate. Another popular way to anchor molecules to the electrodes is to make use of
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
's high
chemical affinity In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. Chemical affinity can also refer to the tendency of an atom or compound to com ...
to
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
; though useful, the anchoring is non-specific and thus anchors the molecules randomly to all gold surfaces, and the
contact resistance Electrical contact resistance (ECR, or simply contact resistance) is resistance to the flow of electric current caused by incomplete contact of the surfaces through which the current is flowing, and by films or oxide layers on the contacting sur ...
is highly dependent on the precise atomic geometry around the site of anchoring and thereby inherently compromises the reproducibility of the connection. To circumvent the latter issue, experiments have shown that
fullerenes A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may have hollow sphere- ...
could be a good candidate for use instead of sulfur because of the large conjugated π-system that can electrically contact many more atoms at once than a single atom of sulfur. The shift from metal electrodes to
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
electrodes allows for more tailored properties and thus for more interesting applications. There are some concepts for contacting organic molecules using semiconductor-only electrodes, for example by using
indium arsenide Indium arsenide, InAs, or indium monoarsenide, is a narrow-bandgap semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. Indium arsenide is similar in properties to gallium ars ...
nanowire file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm). A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
s with an embedded segment of the wider bandgap material
indium phosphide Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende (crystal structure), zincblende") crystal structure, identical to that of gallium arsenide, GaAs and most of the List of ...
used as an electronic barrier to be bridged by molecules. One of the biggest hindrances for single-molecule electronics to be commercially exploited is the lack of means to connect a molecular sized circuit to bulk electrodes in a way that gives reproducible results. Also problematic is that some measurements on single molecules are done at cryogenic temperatures, near absolute zero, which is very energy consuming.


History

The first time in history molecular electronics are mentioned was in 1956 by the German physicist Arthur Von Hippel, who suggested a bottom-up procedure of developing electronics from atoms and molecules rather than using prefabricated materials, an idea he named molecular engineering. However the first breakthrough in the field is considered by many the article by Aviram and Ratner in 1974. In this article named Molecular Rectifiers, they presented a theoretical calculation of transport through a modified charge-transfer molecule with donor acceptor groups that would allow transport only in one direction, essentially like a semiconductor diode. This was a breakthrough that inspired many years of research in the field of molecular electronics.


Molecular materials for electronics

The biggest advantage of conductive polymers is their processability, mainly by dispersion. Conductive polymers are not
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
s, i.e., they are not thermoformable, yet they are organic polymers, like (insulating) polymers. They can offer high electrical conductivity but have different mechanical properties than other commercially used polymers. The electrical properties can be fine-tuned using the methods of
organic synthesis Organic synthesis is a branch of chemical synthesis concerned with the construction of organic compounds. Organic compounds are molecules consisting of combinations of covalently-linked hydrogen, carbon, oxygen, and nitrogen atoms. Within the gen ...
and of advanced dispersion. The linear-backbone polymers such as
polyacetylene Polyacetylene (IUPAC name: polyethyne) usually refers to an organic polymer with the repeating unit . The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is ...
, polypyrrole, and
polyaniline Polyaniline (PANI) is a conducting polymer and organic semiconductor of the semi-flexible rod polymer family. The compound has been of interest since the 1980s because of its electrical conductivity and mechanical properties. Polyaniline is one ...
are the main classes of conductive polymers. Poly(3-alkylthiophenes) are the archetypical materials for
solar cells A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
and transistors. Conducting polymers have backbones of contiguous sp2 hybridized carbon centers. One valence electron on each center resides in a pz orbital, which is orthogonal to the other three sigma-bonds. The electrons in these delocalized orbitals have high mobility when the material is ''doped'' by oxidation, which removes some of these delocalized electrons. Thus the conjugated p-orbitals form a one-dimensional electronic band, and the electrons within this band become mobile when it is emptied partly. Despite intensive research, the relationship between morphology, chain structure, and conductivity is poorly understood yet. Due to their poor processability, conductive polymers have few large-scale applications. They have some promise in antistatic materials and have been built into commercial displays and batteries, but have had limits due to the production costs, material inconsistencies, toxicity, poor solubility in solvents, and inability to directly melt process. Nevertheless, conducting polymers are rapidly gaining attraction in new uses with increasingly processable materials with better electrical and physical properties and lower costs. With the availability of stable and reproducible dispersions, poly(3,4-ethylenedioxythiophene) (PEDOT) and
polyaniline Polyaniline (PANI) is a conducting polymer and organic semiconductor of the semi-flexible rod polymer family. The compound has been of interest since the 1980s because of its electrical conductivity and mechanical properties. Polyaniline is one ...
have gained some large-scale applications. While PEDOT is mainly used in antistatic applications and as a transparent conductive layer in the form of PEDOT and polystyrene sulfonic acid (PSS, mixed form: PEDOT:PSS) dispersions, polyaniline is widely used to make printed circuit boards, in the final finish, to protect copper from corrosion and preventing its solderability. Newer nanostructured forms of conducting polymers provide fresh impetus to this field, with their higher surface area and better dispersability. Recently supramolecular chemistry has been introduced to the field, which provide new opportunity for developing next generation of molecular electronics. For example, two orders of magnitude current intensity enhancement was achieved by inserting cationic molecules into the cavity of pillar rene.


See also

*
Comparison of software for molecular mechanics modeling This is a list of computer programs that are predominantly used for molecular mechanics calculations. See also *Car–Parrinello molecular dynamics *Comparison of force-field implementations *Comparison of nucleic acid simulation software * ...
* Molecular conductance * Molecular wires *
Organic semiconductor Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals o ...
* Single-molecule magnet * Spin transition * Unimolecular rectifier *
Nanoelectronics Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical ...
* Molecular scale electronics * Mark Ratner * Mark Reed (physicist) *
James Tour James Mitchell Tour is an American chemist and nanotechnologist. He is the T. T. and W. F. Chao Professor of Chemistry and a Professor of Materials Science & Nanoengineering at Rice University in Houston, Texas. Education Tour received degr ...
*
Supramolecular chemistry Supramolecular chemistry refers to the branch of chemistry concerning Chemical species, chemical systems composed of a integer, discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from w ...
* Supramolecular electronics


References


Further reading

*


External links

* {{Authority control Nanoelectronics Organic polymers Organic semiconductors Conductive polymers