Mitochondrial Unfolded Protein Response
   HOME

TheInfoList



OR:

The mitochondrial unfolded protein response (UPRmt) is a
cellular stress response Cellular stress response is the wide range of molecular changes that cells undergo in response to environmental stressors, including extremes of temperature, exposure to toxins, and mechanical damage. Cellular stress responses can also be caused ...
related to the
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
. The UPRmt results from unfolded or misfolded proteins in mitochondria beyond the capacity of chaperone proteins to handle them. The UPRmt can occur either in the
mitochondrial matrix In the mitochondrion, the matrix is the space within the inner membrane. It can also be referred as the mitochondrial fluid. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitoc ...
or in the mitochondrial inner membrane. In the UPRmt, the mitochondrion will either upregulate chaperone proteins or invoke
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalysis, catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products ...
s to degrade proteins that fail to fold properly. UPRmt causes the
sirtuin Sirtuins are a family of signaling proteins involved in metabolic regulation. They are ancient in animal evolution and appear to possess a highly conserved structure throughout all kingdoms of life. Chemically, sirtuins are a class of proteins ...
SIRT3 to activate antioxidant enzymes and mitophagy. Mitochondrial
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
mutations that extend the life span of
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a Hybrid word, blend of the Greek ''caeno-'' (recent), ''r ...
(
nematode The nematodes ( or ; ; ), roundworms or eelworms constitute the phylum Nematoda. Species in the phylum inhabit a broad range of environments. Most species are free-living, feeding on microorganisms, but many are parasitic. Parasitic worms (h ...
worms) also activate the UPRmt. Activation of the UPRmt in nematode worms by increasing NAD+ by supplementation with
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
or
nicotinamide riboside Nicotinamide riboside (NR, SR647) is a pyridine-nucleoside and a form of vitamin B3. It functions as a precursor to nicotinamide adenine dinucleotide, or NAD+, through a two-step and a three-step pathway. Chemistry While the molecular weight of ...
has been shown to extend lifespan.
Glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cell (biology), cells in the central nervous system (the brain and the spinal cord) and in the peripheral nervous system that do not produce Action potential, electrical ...
and
germline In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes ( eggs and sperm), which can come together to form a zygote. They dif ...
mitochondria has been found to play a significant role in the signalling and regulation of UPRmt have been shown to play a central role Nicotinamide riboside supplementation in mice has also been shown to activate the UPRmt.


Cellular unfolded protein responses

A majority of cellular proteins are translated and folded in the cytosol with the help of molecular chaperones. Just as proteins must be folded to function in the cytosol, proteins in organelles like the
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
(ER) and
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
also must be folded to function. Consequently, specific cellular mechanisms exist that aim to detect cellular stress (causing misfolded/unfolded proteins to accumulate), transduce the signal to the nucleus, and mediate the restoration of protein homeostasis (
proteostasis Proteostasis is the dynamic regulation of a balanced, functional proteome. The proteostasis network includes competing and integrated biological pathways within cells that control the biogenesis, folding, trafficking, and degradation of prote ...
). In the cytosol, the heat shock response (HSR) manages the unfolded proteins through heat shock factor 1 (HSF1). HSF-1 is a transcription factor that, upon increases in unfolded cytosolic proteins, will trimerize and enter the nucleus to upregulate the expression of heat shock proteins (HSPs) that will act as protein folding chaperones. In organelles like the ER and mitochondria, the response is slightly more complex. Both UPR mechanisms are conceptually similar in that they are activated by the accumulation of misfolded/ unfolded proteins and induce the translational upregulation of molecular chaperones and proteases to process proteins and restore homeostasis.  Despite their names, the two pathways possess distinct initiating stimuli and signaling mechanisms that regulate the responses. The ER UPR is induced by a variety of cellular stressors that inhibit protein folding or exit of the ER. Within the ER GRP78, an ER lumen chaperone, is bound to ER membrane proteins. When unfolded proteins build up, it dissociates to from the membrane to aid in protein folding. GRP78 dissociation triggers the UPRER that restores protein homeostasis via three pathways (IRE1, PERK, and
ATF6 Activating transcription factor 6, also known as ATF6, is a protein that, in humans, is encoded by the ''ATF6'' gene and is involved in the unfolded protein response. Function ATF6 is an endoplasmic reticulum (ER) stress-regulated transmembr ...
). The UPRER restores proteostasis by selectively attenuation protein translation, upregulating protein folding chaperones, and degrading excess misfolded proteins via ER associated protein degradation ( ERAD). Prolonged activation of the UPRER can result in
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
. The UPRmt progresses through the bZIP transcription factor ATFS-1 (in ''C. elegans''; ATF5 in mammals). AFTS-1 is usually imported into the mitochondria where it is degraded by the LON protease. Mitochondrial dysfunction inhibits this process and allows ATFS-1 to accumulate in the cytosol and enter the nucleus where it can act as a transcription factor. This responses restores proteostasis by upregulating chaperones and proteases, increasing reactive oxygen species (ROS) detoxification, and increasing mitochondrial import machinery.


Molecular

In mammals, UPRmt has mostly been studied using transfection with a truncated, dysfunctional mitochondrial enzyme (OTCΔ) that does not fold correctly after translocation into the mitochondrial matrix. Using this approach, several components of the mammalian UPRmt have been identified including the mitochondrial chaperone heat shock protein 60 (Hsp60), the mitochondrial caseinolytic peptidase ClpP, the transcription factor Chop and the kinases c-Jun N-terminal kinase (JNK) and the interferon-induced, double-stranded RNA-activated protein kinase (Pkr). The appropriately named activating transcription factor associated with stress (ATFS-1) is one of the primary transcription factors required for UPRmt activation in worms. ATFS-1 has a nuclear localization sequence that allows it to be imported into the nucleus as well as an N-terminal mitochondrial targeting sequence (MTS) that allows for import into the mitochondria.  In healthy cells, ATFS-1 is preferentially targeted to the mitochondrial matrix where it is degraded by the Lon protease. The MTS on ATFS-1 is predicted by Mitofates to be substantially weaker than most MTSs which would allow it to be sensitive to subtle mitochondrial dysfunction. Following mitochondrial stress, ATFS-1 mitochondrial import efficiency is decreased resulting in a cytoplasmic accumulation of ATFS-1. Subsequently, ATFS-1 will enter the nucleus via its nuclear transport signal.  In the nucleus, ATFS-1 has a broad transcriptional regulation as it will: attenuate OXPHOS gene expression in both the nucleus and mitochondria, upregulate chaperones and proteases to re-establish mitochondrial proteostasis, increase ROS detoxification, and increase mitochondrial import machinery.


Relationship to cancer

Recent research has implicated the UPRmt in the transformation of cells in to cancer cells. Researchers have identified the SIRT3 axis of UPRmt as a marker to differentiate between metastatic and non-metastatic breast cancer. As many cancers exhibit a metabolic shift from oxidative phosporylation-depentent energy production to aerobic glycolysis dependent energy production, also known as the Warburg effect, researchers suggest that cancer cells rely on the UPRmt to maintain the mitochondrial integrity. Furthermore, multiple studies have shown that inhibition of UPRmt, specifically ATF5, selectively kills human and rat cancer cells rather than non-cancer cells.


Relationship to inflammatory bowel disease

Inflammatory bowel diseases (Crohn´s disease and ulcerative colitis) have been associated with mitochondrial dysfunction in the intestinal epithelium. In mouse models of intestinal inflammation and in IBD patients, signs of UPRmt -activation have been demonstrated. In particular, mitochondrial dysfunction and UPRmt -activation have been linked to intestinal stemness and Paneth cell (dys-)function.


See also

*
Unfolded protein response The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. It has been found to be conserved between mammalian species, as well as yeast and worm organisms. The UPR is activated in response t ...
* Genetics of aging * Daf-2 * Age-1


References

{{Reflist Mitochondria Molecular biology Proteins