Minimum-distance estimation (MDE) is a conceptual method for fitting a statistical model to data, usually the
empirical distribution. Often-used estimators such as
ordinary least squares
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the ...
can be thought of as
special case
In logic, especially as applied in mathematics, concept is a special case or specialization of concept precisely if every instance of is also an instance of but not vice versa, or equivalently, if is a generalization of . A limiting case ...
s of minimum-distance estimation.
While
consistent
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consisten ...
and
asymptotically normal, minimum-distance estimators are generally not
statistically efficient when compared to
maximum likelihood estimators, because they omit the
Jacobian
In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to:
*Jacobian matrix and determinant
*Jacobian elliptic functions
*Jacobian variety
*Intermediate Jacobian
In mathematics, the intermediate Jacobian of a compact Kähler m ...
usually present in the
likelihood function
The likelihood function (often simply called the likelihood) represents the probability of random variable realizations conditional on particular values of the statistical parameters. Thus, when evaluated on a given sample, the likelihood funct ...
. This, however, substantially reduces the
computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) ...
of the optimization problem.
Definition
Let
be an
independent and identically distributed
In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usua ...
(iid)
random
In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual rando ...
sample
Sample or samples may refer to:
Base meaning
* Sample (statistics), a subset of a population – complete data set
* Sample (signal), a digital discrete sample of a continuous analog signal
* Sample (material), a specimen or small quantity of so ...
from a
population
Population typically refers to the number of people in a single area, whether it be a city or town, region, country, continent, or the world. Governments typically quantify the size of the resident population within their jurisdiction using ...
with
distribution Distribution may refer to:
Mathematics
*Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations
*Probability distribution, the probability of a particular value or value range of a varia ...
and
.
Let
be the
empirical distribution function
In statistics, an empirical distribution function (commonly also called an empirical Cumulative Distribution Function, eCDF) is the distribution function associated with the empirical measure of a sample. This cumulative distribution function ...
based on the sample.
Let
be an
estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the ...
for
. Then
is an estimator for
.
Let